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Abstract This paper presents a volumetric stereo and sil-
houette fusion algorithm for acquiring high quality models
from multiple calibrated photographs. Our method is based
on computing and merging depth maps. Different to pre-
vious methods of this category, the silhouette information
is also applied in our algorithm to recover the shape infor-
mation on the textureless and occluded areas. The proposed
algorithm starts by computing visual hull using a volumet-
ric method in which a novel projection test method is pro-
posed for visual hull octree construction. Then, the depth
map of each image is estimated by an expansion-based ap-
proach that returns a 3D point cloud with outliers and redun-
dant information. After generating an oriented point cloud
from stereo by rejecting outlier, reducing scale, and esti-
mating surface normal for the depth maps, another oriented
point cloud from silhouette is added by carving the visual
hull octree structure using the point cloud from stereo to re-
store the textureless and occluded surfaces. Finally, Poisson
Surface Reconstruction approach is applied to convert the
oriented point cloud both from stereo and silhouette into a
complete and accurate triangulated mesh model. The pro-
posed approach has been implemented and the performance
of the approach is demonstrated on several real datasets,
along with qualitative comparisons with the state-of-the-art
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1 Introduction

At present the art of computing complex and high quality 3D
models has large and wide applications in computer graph-
ics, medical imaging, 3D animation, electronic games, etc.
In practice, image-based modeling technique is an efficient
and convenient method to acquire models of real word ob-
ject. According to the information it uses, image-based mod-
eling can be categorized into three classes: shape from shad-
ing, shape from silhouette, and shape from stereo. Shape
from shading methods [1] are based on the diffusing prop-
erties of Lambertian surfaces. They require controlled en-
vironments where the illumination of the object space and
the object reflectance must be known. In the second one [2]
[3], 3D object shape is constructed by intersection of the vi-
sual cones formed by back-projecting the silhouettes in the
corresponding images. The reconstructed 3D object shape is
not guaranteed to be the same as the original object since
concave surface regions can never be distinguished using
silhouette information alone. Methods of shape from stereo
seek to reconstruct a depth map for each input view using
information contained in the object texture. Evidently, if the
object has no texture or if its information is too weak, the
method will fail. In this case, another type of information
such as silhouette, shading or radiance can be employed to
reconstruct accurate and complete models.

This paper proposes an algorithm to reconstruct 3D ob-
ject surface from multiple calibrated images by using both
stereo and silhouette information. Specifically, the proposed
reconstruction algorithm can be decomposed into four steps.



2

In the first step, visual hulls are computed by a volumet-
ric method in which a novel projection test method is pro-
posed for visual hull octree construction. Then, the depth
map of each image is estimated from multi-view stereo by an
expansion-based approach and an oriented point cloud de-
noted as point cloud from stereo (PCST) is computed from
the depth maps through outlier rejection, point cloud size
reduction and surface normal estimation. In the third step,
the visual hull octree structure is carved by the PCST to
generate another oriented point cloud on the visual hull de-
noted as point cloud from silhouette (PCSL) to recover the
shape information from silhouettes on those parts of the ob-
ject surface which cannot be captured by texture informa-
tion. At last, these two point clouds are merged to generate
a more complete point cloud on object surface denoted as
point cloud from stereo and silhouette (PCSTSL) and Pois-
son Surface Reconstruction (PSR) [4] approach is applied
to reconstruct an accurate and complete surface model from
the PCSTSL since this approach can robustly recover the
fine details from a set of noisy, non-uniform points.

Compared with traditional image-based modeling ap-
proaches, the most obvious unique of our proposed algo-
rithm lies in the visual hull computation, expansion-based
depth map estimation, and volumetric stereo and silhouette
fusion. In particular, the benefits of our approach are as fol-
lows:

– A novel volumetric approach constructs high quality vi-
sual hull mesh from silhouettes.

– An expansion-based depth map estimation algorithm
outputs dense and accurate depth map quickly.

– A volumetric stereo and silhouette fusion approach ap-
plies the silhouette information to amend the missing
shape information from multi-view stereo in our recon-
struction framework.

The paper is organized as follows. In Section 2, we
present a brief review of several related works. In Section
3, a novel volumetric visual hull computation method is ad-
dressed in detail. In Section 4, an expansion-based approach
is applied for depth map estimation and an oriented PCST
is generated by cleaning, downsampling and surface normal
estimation for the point cloud merged from the depth maps.
In Section 5, the visual hull octree structure is carved by
the estimated PCST to generate a PCSL and the PSR ap-
proach is applied to reconstruct a complete model from the
shape information both from stereo and silhouette. In Sec-
tion 6 we present experimental results on several datasets,
along with qualitative comparisons with several state-of-the-
art imaged-based modeling algorithms. Finally, in Section 7,
we draw some conclusions and give future directions about
this work.

2 Related Work

Although there are many approaches to reconstruct an accu-
rate model of a 3D object from a sequence of calibrated im-
ages, these approaches can be mainly categorized into four
classes according to the taxonomy of Seitz et al. [5]: 3D vol-
umetric approaches [6] [7] [8], surface evolution approaches
[9] [10] [11] , feature extraction and expansion techniques
[12] [13] [14] and depth map based methods [15] [16] [17]
[18]. In practice, depth map based methods are not only
easy to implement but also can reconstruct very accurate sur-
face model. Generally, these methods involve two separate
stages. First, a depth map is computed for each viewpoint
using binocular stereo. Second, the depth maps are merged
to produce a 3D model. In these methods, the estimation of
the depth maps is crucial to the quality of the final recon-
structed 3D model. Our method falls into the fourth cate-
gory. However, the proposed approach is different from the
previous works of this category in many aspects of which the
most important one is that the geometric constraint associ-
ated with the silhouettes is incorporated into the reconstruc-
tion process. In what follows we discuss five papers that are
most closely related to this paper, with an emphasis on the
differences compared to our method.

The inspiration for the approach presented in this paper
is the work of Hernandez et al. [10]. They recover a com-
plete model by deforming a mesh, initialized as the visual
hull, to find a minimum cost surface in a cost volume which
is merged from the depth maps for each viewpoint. In the
deformation process, they also incorporate an additional sil-
houette terms to fuse silhouettes with stereo for reconstruc-
tion. Since their approach is based on iterative local refine-
ment via snake deformation model, it is susceptible to lo-
cal minima and unstability due to many parameters need to
be tuned. In their algorithm, depth maps are computed by
backprojecting the ray for each pixel into the visual hull and
then reprojecting the depth interval onto neighboring views
where window-based correlation is performed. The work
presented here improves the depth map estimation approach
by introducing an expansion-based approach. Furthermore,
our approach uses an oriented point cloud based approach
to combine the shape information both from texture and sil-
houette into a full 3D model.

Another related work has been reported by Goesele et
al. [16]. They use a two-step technique. They first use ro-
bust window-based matching to compute reliable depth es-
timates. Then a volumetric method is applied to merge them
into a single surface representation. Although their method
is simple to implement, their models suffer from a large
number of holes and very long processing time. In contrast,
our algorithm is very efficient and can reconstruct complete
object surface estimates by using both texture and silhouette
information.
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Recent work by Furukawa et al. [12] proposes a novel
algorithm for calibrated multi-view stereo. The algorithm
starts by computing a dense set of small rectangular patches
covering the surfaces visible in the images and then converts
the resulting patch model into an initial mesh model by PSR
approach or iterative snapping. Finally, an optional final re-
finement algorithm is applied to refine the initial mesh to
achieve even higher accuracy. In their work, they computes
a dense set of small rectangular patches by a match, expand
and filter procedure. In contrast, we compute an oriented
point cloud from multi-view stereo by a depth map estima-
tion, point cloud cleaning and downsampling, and surface
normal estimation procedure.

Our work is similar to that of Bradley et al. [17] who
propose to reconstruct an accurate model from multi-view
stereo in two steps: binocular stereo matching on image
pairs and surface reconstruction from depth maps. The
binocular stereo algorithm creates depth maps from pairs of
adjacent viewpoints and makes use of scaled window match-
ing to improve the density and precision of depth estimates.
And the surface reconstruction step creates a triangular mesh
from the depth maps by a downsampling, cleaning and
meshing procedure. Although we process the depth maps
by similar procedures, we use different methods to compute
depth maps from multi-view stereo. Our algorithm computes
depth maps by an expansion-based approach, while Bradley
et al. just use the basic binocular stereo matching method to
compute depth map for each image.

Space carving [9] is a technique that starts from a vol-
ume containing the scene and greedily carves out non-
photoconsistent voxels from that volume until all remaining
visible voxels are consistent. Since it uses a discrete repre-
sentation of the surface but does not enforce any smoothness
constraint on the surface, the reconstructed results are often
quite noisy. Our approach also carves the visual hull octree
structure, however, the goal is to generate point cloud from
silhouette to amend the missing shape information from
stereo which is different from the space carving approach.
Furthermore, our algorithm outputs complete and accurate
shape estimate represented by triangulated mesh, rather than
a voxel based representation.

3 Shape from Silhouette

The visual hull [19] is the maximal shape consistent with an
object’s silhouettes as seen from any viewpoint in a given re-
gion which can be constructed by intersecting the cones gen-
erated by back projecting the object silhouettes of a given set
of views, shown in Fig. 1. Different approaches for the con-
struction of the visual hull have been developed, such as vol-
umetric method [2], polyhedral method [20] and marching
intersection method [21]. The proposed visual hull compu-
tation method belongs to volumetric method which is based

Fig. 1 The intersection of silhouette cones defines an approximate ge-
ometric representation of an object called the visual hull [10].

on the polygonization of octree structure by using marching
cubes algorithm [22].

The proposed visual hull computation method can be de-
composed into three steps. Firstly, a 3D bounding box of an
object is computed by an optimization method. Taking the
3D bounding box as a root node, an octree of the object is
reconstructed from the silhouettes through recursive subdi-
vision and projection tests in which a novel projection test
method is proposed to determine whether a voxel is locat-
ing outside, on or inside the visual hull. Finally, the visual
hull mesh is extracted from the octree structure by using
marching cubes algorithm. An isosurface function that cor-
responds to the visual hull surface is also defined in order to
extract smooth visual hull mesh.

3.1 3D Bounding Box Estimation

To build visual hull octree structure, an initial bounding box
is needed as a root node. In practice, an accurate 3D bound-
ing box can improve the precision of the result mesh. Since
we do not dispose of any 3D information, we calculate the
3D bounding box only from a set of silhouettes and the pro-
jection matrices. This can be done by considering the 2D
bounding boxes of each silhouette and then back projecting
these 2D bounding boxes. Then the bounding box of the ob-
ject can be computed by an optimization method for each
of the 6 variables defining the bounding box, which are the
maximum and minimum of x,y,z [23].

3.2 Visual Hull Octree Construction

An octree of an object can be reconstructed from the silhou-
ettes through recursive subdivision and projection tests. The
process begins with a single voxel, which is the 3D bound-
ing box of the object. Each voxel is projected onto all the im-
ages and tested against the silhouettes. The test result classi-
fies the voxel as being inside, outside or on the boundary of
the visual hull (see Fig. 2). Among the three types of vox-
els, only voxels on the boundary of the visual hull contain
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the potential visual hull boundary and are subject to further
subdivision until the maximum allowed number of subdi-
vision is reached. Therefore, the projection test method is
crucial for visual hull octree construction. In this section, a
novel projection test method is proposed for visual hull oc-
tree construction. Before explaining our method, we present
several projection test methods in previous work on visual
hull computation.

– R. Szeliski’s projection test method [2]: A cube pro-
jected into an image plane will in general form a six-
sided polygon. Szeliski uses a coarser test based on the
hexagon’s bounding box, which may sometimes fail to
detect a true inclusion or exclusion. As the goal of his
algorithm is to obtain a quick and rough model of an
object in close to real time, this method is adaptable.

– Y. Yemez et al.’s projection test method [3]: Yemez et
al. solve this problem by oversampling the edges of an
voxel up to the maximum octree level such that the voxel
type decision is based on the state (in or out) of the inter-
mediate sampled points along the edges and the corners.
That is: (1) If all these points of the voxel are out of the
visual hull, the voxel’s type is out; (2) If all these points
of the voxel are in the visual hull, the voxel’s type is in;
(3) Else, the voxel’s type is on.

– M. Potmesil’s projection test method [24]: This method
first computes the exact projection of a voxel and then
does intersection test between the projection of the voxel
and the silhouettes to determine the type of the voxel.

In order to build visual hull octree structure and extract
smooth mesh from the octree, we define an isosurface
function that corresponds to the visual hull surface. The
visual hull isosurface function for a given 3D point v is

fiso(v) = max
i

Di(Pi× v), i = 1,2, · · · ,N (1)

where Di is the distance transform [25] to the contour of sil-
houette i, negative inside and positive outside the silhouette.
In fact, for each 3D point, its isosurface function value rep-
resents the 3D distance between the 3D point and the visual
hull surface, negative inside and positive outside the visual
hull.

To evaluate a given voxel, we project it into all the sil-
houettes to assign it one of three available types. Our pro-
jection test method (see Algorithm 1) is similar to Potmesil’s
one [24] which first computes the exact projection of a voxel
and then does intersection test between the projection of the
voxel and the silhouettes to determine the type of the voxel.
However, our methods are different in two aspects. Firstly,
the proposed projection test method takes advantage of the
isofunction value of a voxel’s 8 corners to decrease compu-
tation since when part of the 8 corners are out of visual hull
there is no need to project the voxel to all the silhouette im-
ages to know its type. Secondly, we use a simpler method to

Fig. 2 Three types of a voxel in octree-based visual hull reconstruc-
tion: on, in, and out of the visual hull.

compute the exact projection of a voxel. Potmesil computes
the projection of a voxel by determining the relative position
between the voxel and the projection center of an image and
then getting the projection of the cube based on a lookup
table. While our method first computes the projections of 8
corners of a voxel, then calculates the convex hull of them
which is the same as the projection of the voxel according
to the basic formulation of the convex hull of a 3D polygon
projected on a 2D plane.

Input: A given voxel and all the calibrated silhouette images
Output: The type of the voxel
Calculate the isofunction value of 8 corners of the voxel;
if the 8 corners of the voxel are out of the visual hull then

Project the voxel to all the images;
if in one image the projection of the voxel is completely out
of the silhouette then

The voxel’s type is out;
else

Its type is on;

else if the 8 corners of the voxel are in the the visual hull. then
Project the voxel to all the images;
if in all the images the projection of the voxel is completely
in the silhouettes then

The voxel’s type is in;
else

Its type is on;

else
The voxel’s type is on;

Algorithm 1: The proposed projection test algorithm.

In practice, we use the gift wrapping algorithm [26] to
compute the convex hull of the projections of a voxel’s 8
corners. Once the exact projection of a voxel on each sil-
houette image has been computed, our approach needs to
determine the relative position of the projection of the voxel
to all the silhouettes. Since the projection of the voxel is a
convex polygon, our approach evaluates the relative posi-
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Fig. 3 Four color images of the Soldier Terra Cotta Warrior sequence.

Fig. 4 Visual hull octree structure of the Soldier object. From left to
right, the level of detail ranges from 6 to 9 depth levels.

tion of the projection to the silhouette by a scan processor
that tracks only the right and the left edges from the top to
the bottom of the projection. The evaluation criterion is: (1)
If all the pixels in the polygon are inside the object regions,
the polygon is in the silhouette; (2) If all the pixels in the
polygon are outside the object regions, the polygon is out
of the silhouette; (3) Else, the polygon intersects with the
silhouette. The octree models of a Soldier Terra Cotta War-
rior (see Fig. 3) with different resolutions constructed by our
approach are presented in Fig. 4.

3.3 Visual Hull Mesh Extraction by Marching Cubes
Algorithm

Once the visual hull octree has been constructed, marching
cubes algorithm is applied to extract the visual hull mesh.
To do this, the voxel occupancy of a leaf node is encoded
into 8 values using the isofunction value of its eight vertices.
Since these isofunction values can represent the 3D distance
to the visual hull surface, the mesh extracted from the octree
structure is very smooth. In Fig. 5 we present two views
of the visual hull mesh of the Soldier object and we can
appreciate the quality of the visual hull model.

The visual hull will be used in our image-based model-
ing algorithm in two aspects. On one hand, in order to gen-
erate depth maps from multi-view stereo, the depth interval
by backprojecting the ray for each pixel into the visual hull

Fig. 5 Two views of the visual hull mesh of the Soldier object extracted
from 8-level octree structure.

mesh defines the search range for each pixel, described in
Section 4. On the other hand, the visual hull octree structure
is carved by a PCST in order to generate a PCSL, described
in Section 5.

4 Shape from Multi-View Stereo

The shape information represented by an oriented point
cloud is computed from multi-view stereo in this section.
Firstly, depth maps are estimated from multi-view stereo ef-
ficiently by an expansion-based method. Since the 3D point
cloud merged from the depth maps contains outliers and re-
dundant information, the second step is to reject the outliers
and downsample the point cloud. Finally, the surface nor-
mal of each point in the point cloud is estimated from the
positions of the neighbors and the viewing direction of each
3D point is employed to select the orientation of estimated
surface normal.

4.1 Expansion-Based Depth Map Estimation

The proposed expansion-based depth map estimation ap-
proach is an improvement to the Hernandez et al.’s greedy
depth map generation approach [10]. Therefore, we first
give a short explanation to the greedy approach. The in-
puts of the approach are a sequence of calibrated images
I = {I0, I1, .., In−1} and the visual hull of an object. For each
image Ii, the approach selects k neighboring views against
which to correlate Ii using robust window matching. For
each pixel p in Ii, the approach computes the depth interval
from the visual hull of the object which is the backprojected
ray of p inside the visual hull. Then reproject the depth in-
terval into selected neighboring views and compute the nor-
malized cross-correlation (NCC) value between an m×m
window centered on p and the corresponding windows cen-
tered on the projections in each of the image. For a given
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depth interval, its projection into the different images are all
related by the epipolar constraint by which all the correla-
tion curves generated by different views can be related into
a single coordinate system [27]. Once the correlation curves
are computed, the best candidate depth is chosen from them
if its NCC value is larger than some threshold thres1 for at
least two views in the k neighboring views. Note that for
each pixel p in Ii, the best candidate depth is chosen to be
the value of depth that maximizes NCC value, or none if
no valid depth is found. After the best candidate depth is
selected, the position of the 3D point corresponding to the
pixel p can be computed easily by triangulation method. A
detailed description of Hernandez et al.’s greedy depth map
estimation approach can be seen in [10].

A drawback of this greedy approach is the computation
time since searching the depth value for each pixel from the
depth interval defined by the visual hull has a large redun-
dancy of computation. Hernandez et al. speed up the greedy
approach by partitioning an image into 3 different resolution
layers, computing the depth interval from the visual hull for
the lowest resolution layer and from the precedent layer for
consecutive layers. In practice, the improvement is about 5
or 6 times faster for well textured images.

The key insight of our approach is to expand from the al-
ready recovered shape information in order to obtain shape
from multi-view stereo quickly. Specifically, our approach
first partitions each image into lots of small windows with
fixed size M×M, then computes a depth value for the cen-
ter pixel of each window using greedy approach. If we find a
depth value and its confident value is larger than a threshold
thres2, the depth value is taken as a reference depth value
for the window. In practice, if we compute the 3D positions
for all the reference depth values, we can obtain a sparse
point cloud with many outliers although only the depth val-
ues with high confident value are selected (see Fig. 6 (a) and
(b)). Therefore, a median-rejection method is applied for all
the reference depth values of an image to reject the obvious
outliers (see Fig. 6 (c) and (d)). Since our approach only se-
lects the depth value with a high confident value, there will
be many windows without reference depth value, especially
for the surface area with little or no texture. Therefore, we
compute a reference value for the window without it from its
3×3 neighboring windows, i.e., for a window without a ref-
erence depth value, if the number of neighboring windows
with it in the 3×3 neighborhood is more than a fixed number
a (in all our experimental result, a = 4), compute a reference
depth value for the window as the median of the depth values
of its neighboring windows. This process iterates for 5 times
for all the experimental results. In Fig. 6 (e), we can see that
the point cloud is more dense after this step. For all the win-
dows of an image, our approach only computes depth value
for the pixels of a window with reference depth value. Since
each image is a picture of an object and we can expect it to

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Expansion-based depth map estimation steps for one image of
the dinoRing sequence. (a) and (b) Two views of a sparse point cloud
merged from reference depth values. (c) and (d) Two views of the
sparse point cloud after median-rejection process. (e) The sparse point
cloud after expanding from neighboring windows. (f) The estimated
depth maps. From left to right, the number of 3D point in each point
cloud is 5868, 5691, 6021 and 128455.

be locally continuous, if the surface is correctly seen and if
there is no occlusion, the depth value of the pixels in each
window will not be very different from its reference depth
value. Therefore, we search the depth values for all the pix-
els in the window from a depth interval with fixed length
d centered at the reference depth along the optical ray. The
depth map of an image of the dinoRing sequence provided
by the Middlebury benchmark [33] is demonstrated in Fig.
6 (f) which shows that our approach can compute a dense
depth map. Our expansion-based depth map estimation al-
gorithm is also described in Algorithm 2.

In implementation, the size of the expanding window
M×M depends on the resolution of input image sequence.
Typically, for input images with 2000×3000 pixels, the size
of the expanding window is 21×21. And the value of thres2
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Input: Calibrated image sequence and the visual hull
Output: Depth map of each image
for each image in imageList do

for each expanding window do
Compute a reference depth value by greedy approach;

end
Reject the outliers by median-rejection method;
for the window without reference depth value do

Compute a reference depth value from its 3×3
neighboring windows.

end
for each expanding window do

Search the depth value for each pixel in the window
from the depth interval defined by the reference depth;

end
end

Algorithm 2: The proposed expansion-based depth
map estimation algorithm

depends only on how well of the texture of the object. For a
well textured object, thres2 = 3.0, while for an object with
little texture, thres2 = 2.5. The value of d depends on both
the size of the reconstruction object and the size of the ex-
panding window. Generally, the value of d is from 1% to 2%
of the size of the reconstruction object.

Since the depth interval defined by the reference depth is
much shorter than the depth interval defined by visual hull,
the computation time of the proposed approach is dominated
by the reference depth computation step. Typically, the im-
provement of computation time for an image partitioned into
5×5 windows is around 10 times faster than the greedy ap-
proach. The output of this algorithm is depth map for each
image. We just merge these depth maps into a point cloud
which contains outliers and redundant information. For each
3D point in the point cloud, its confidence value and viewing
direction are stored for post-processing.

4.2 Point Cloud Cleaning and Downsampling

The previous subsection outputs a point cloud on the object
surface which contains many outliers and redundant infor-
mation. On one hand, there are many outliers in the point
cloud generated for miscorrelation. On the other hand, the
point cloud also contains large amounts of redundant infor-
mation due to duplicate reconstructions of parts of the ge-
ometry from multiple views. Therefore, we should reject the
outliers and downsample the point cloud before surface re-
construction.

The outliers of the point cloud are rejected by a two-
step approach. Firstly, the visual hull of a reconstruction ob-
ject is incorporated as a constraint to reject 3D points out of
the visual hull. Then, we build a voting octee from the es-
timated point cloud and select a threshold to eliminate mis-
correlations. Given a set of point samples S and a maximum

Fig. 7 Voting octree for the Soldier sequence with 10 levels of depth
and different thresholds. From left to right, the threshold value is 0, 5,
10, 20.

tree depth V Td , the voting octree is the minimal octree with
the property that every point sample falls into a leaf node at
depth V Td . And we build a voting octree for the point cloud
which contains, for each voxel, the sum of the individual
correlation scores contained in that voxel. This volume can
be seen as a volume of surface probability where a voxel
with a high score is very probable to contain the real object
surface. Therefore, we threshold the voting octree by elimi-
nating the voxels that have relatively lower score values than
a threshold value thres3 to add robustness to the correlation
approach. For input images with 2000×3000 pixels, typical
resolutions of the voting octree are between 10 and 11 levels.
The different views of voting octree for the Soldier sequence
after binarization with different thresholds are presented in
Fig. 7.

To downsample the 3D point cloud, for each node at the
maximum depth of the voting octree, we extract the point
with largest confidence value in the corresponding voxel.
Due to the loss of image space when taking photographs
(the object image being smaller than the image size), loss
of resolution caused by the size of the correlation window
and by the maximum camera baseline, the resolution of a
10-level voting octree is already very high for input images
with 2000× 3000 pixels. Therefore, for a 10-level voting
octree using the point with largest confidence value instead
of all the points in a voxel will not reduce the accuracy of
the estimated depth maps but decrease the size of the point
cloud significantly. These extracted 3D points construct a
new point cloud on the object surface with few outliers and
smaller scale.

4.3 Surface Normal Estimation

After the outliers are rejected and the size of the point cloud
are reduced, we need to estimate exact surface normal for
every point. The Principal Component Analysis (PCA) ap-
proach [28] is applied to do this work. In this approach, for
a 3D point pi in the point cloud the normal is given as ui, the
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eigenvector associated with the smallest eigenvalue of the
covariance matrix of the k-nearest-neighborhood of pi. In
practice, we choose two parameters to define the neighbor-
hood of a given point which are a fixed radius R and a point
number N and use a KD-Tree to efficiently compute the k-
neighborhood queries. To compute a neighborhood for pi,
firstly, we compute the number of points in a ball with the
radius R centering at pi. If the number is larger than or equal
to N, the neighborhood is the ball with radius R. Otherwise,
we enlarge the radius until the number of points in the en-
larged ball is more than N. And the enlarged ball is taken as
neighborhood to compute normal alternatively.

In most cases, the determination of surface normal ori-
entations is not an easy task. However, in our case, we can
select the orientation of the surface normal according to the
dot product result, ζ , between the viewing direction ci of the
point and the surface normal ui [17]. If ζ is larger than zero,
the direction of surface normal is the same as ci. Otherwise,
the direction is as opposed to ci.

ni =

{
ui if ui · ci > 0
−ui Otherwise

(2)

The output of this section is an oriented point cloud on
the object surface with few outliers and relatively small scale
denoted as PCST. In Fig. 8 (a), an oriented PCST for the
Soldier sequence is demonstrated from which we can see
most shape information including some minute details such
as the face has been correctly recovered. However, there are
still a few surface areas of the Soldier object without esti-
mated points since these areas are with no texture or little
texture or cannot be seen from any view. On the other hand,
one limitation of the PSR method is that it will connect two
disconnect regions when there are no samples between these
two regions. If we use the PSR approach to triangulate the
PCST directly, the surface area with no or little estimated 3D
points cannot be correctly recovered, illustrated in Fig. 8 (b)
and (c). We can see that this method cannot reconstruct cor-
rect structures at the left hand or the support platform of the
Soldier object (illustrated by red squares). In the next sec-
tion, we will apply the silhouette information to solve this
problem.

5 Volumetric Stereo and Silhouette Fusion

In practice, shape information of well-textured objects with
simple topology can be effectively captured from multi-view
stereo. However, it is hard to recover complete surface mod-
els for textureless objects or objects with complex topology
using texture information only. In this case, silhouette infor-
mation can be applied to amend the missing shape informa-
tion from multi-view stereo. A volumetric stereo and silhou-
ette fusion approach is proposed in this section to recover

(a) (b) (c)

Fig. 8 Reconstruct the Soldier surface model from the PCST by using
PSR method. (a) An oriented PCST. (b) A model reconstructed from
the PCST using PSR method. (c) Two zoomed portions of the recon-
structed model which are not correctly recovered.

accurate and complete surface estimates. Firstly, another ori-
ented point cloud on the visual hull denoted as PCSL is gen-
erated in order to recover the shape information from sil-
houettes for the surface areas which cannot be captured by
texture information. Secondly, the shape information from
stereo and silhouette are combined by merging two point
clouds (PCST and PCSL) and PSR approach is applied to
convert the oriented point cloud both from stereo and sil-
houette into a triangulated mesh model.

The point cloud from multi-view stereo does not have
or has little points in the area of the object surface with no
texture or little texture or the area that cannot be seen from
any view. In most case, the shape information of these areas
can be captured by the silhouette information. To generate
an oriented point cloud from silhouette, the key new idea is
that we classify the voxels of visual hull octree structure into
three types according to their relative position to the points
of PCST: (1) Type 1: the voxel contains a 3D point or 3D
points of PCST; (2) Type 2: the voxel intervenes the line
between a 3D point of PCST and the optical center of the
point’s reference image; (3) Type 3: all the remaining voxels.
In fact, most of these remaining voxels locate at textureless
and occluded surface areas (see Fig. 9 (a)). As an oriented
point cloud need to be computed at these areas, we extract
the vertices and normals of the visual hull mesh in these
remaining voxels to construct a PCSL (see Fig. 9 (b)). Our
PCSL computation approach is described in Algorithm 3.

Since the voxel carving scheme is prone to errors [29],
although most points of PCSL locate at the the textureless
and occluded surface areas, there are still a few points on
the well-textured surface area which will be taken as outliers
if they are far away from the real object surface. However,
as the PSR approach can create very smooth surfaces that
robustly approximate noisy data, this is not a serious prob-
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(a) (b)

Fig. 9 Description of the algorithm to compute PCSL. (a) Classify the
voxels of visual hull octree structure into three types (the red points
represent a PCST). (b) Extract the vertices and normals of visual hull
mesh in the remaining voxels (the black points represent the visual hull
mesh vertices).

Input: Visual hull octree structure, visual hull mesh, and point
cloud from stereo

Output: Point cloud from silhouette
for each voxel of the visual hull octree structure do

for each point in the point cloud from stereo do
if the point is in the voxel then

The voxel’s type is 1;
Break;

else if the voxel intervenes the line between the point
and the optical center of the point’s reference image.
then

The voxel’s type is 2;
Break;

else
The voxel’s type is 3;

end
end
for each voxel whose type is 3 do

Extract the vertices and normals of the visual hull mesh in
this voxel;

end

Algorithm 3: The proposed PCSL computation algo-
rithm

lem. In practice, we can control the number of these outliers
by setting an appropriate level of visual hull octree structure
to be carved by a PCST denoted as V Hd . For a PCST com-
puted from 10-level voting octree, V Hd is between 7 to 9
which is tradeoff between computation time and the quality
of reconstructed results.

Once the PCSL is computed, it is added to the PCST
computed in the previous section to generate a more com-
plete point cloud on the object surface denoted as PCSTSL.
And we use freely available package [30] of the PSR method
to convert the oriented PCSTSL into a triangulated mesh
model. For the Soldier object, a PCSL and a PCSTSL are
demonstrated in Fig. 10 (a) and (b) from which we can see
that the PCSL can effectively capture the missing shape in-
formation from stereo such as the left hand and the sup-
port platform of the object although it is not as dense as the

(a) (b) (c)

(d) (e) (f)

Fig. 10 Volumetric fusion steps for the Soldier sequence. (a) PCSL.
(b) PCSTSL. (c) and (d) Two views of the reconstructed model. (e)
Textured surface model. (f) Two zoomed portions of the reconstructed
model.

PCST. Two views of the reconstructed model of the Soldier
object are demonstrated in Fig. 10 (c) and (d). In Fig. 10 (f),
two zoomed portions of the reconstructed model which are
the left hand and the support platform of the object are pre-
sented. And we can appreciate that the previous mentioned
problem is solved by adding a PCSL and these two struc-
tures are correctly recovered.

6 Experimental Results

To evaluate the contributions of our approach, we demon-
strate the reconstructions of several real world objects.
Firstly, we apply our approach to reconstruct the Captain
Terra Cotta Warrior dataset acquired in our lab with an elec-
tronic turntable and a fixed camera. Secondly, the BigHead
sequence which is courtesy of [31] and the Skull sequence
which is provided by [32] are also recovered, along with
comparisons with several state-of-the-art image-based mod-
eling techniques. Finally, we quantitatively evaluate our ap-
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Table 1 Characteristics of the datasets used in our experiments.

dataset Ima Resolution PSize Vertices Time
Soldier 36 3088×2056 1253749 150000 74.8
Captain 36 3088×2056 1412236 150000 72.0
BigHead 36 2008×3040 1331808 150000 84.5

Skull 16 1900×1700 578854 180000 67.7
templeRing 47 640×480 732824 316228 20.8
dinoRing 48 640×480 924281 644625 25.2

dinoSparseRing 16 640×480 309504 281146 7.9

proach using the Middlebury benchmark [33] which consists
of two objects, a temple and a dinosaur.

Table 1 lists the number of input images (Ima), their
approximate size (Resolution), the number of points of an
oriented point cloud as input of PSR approach (PSize), the
number of vertices of a final model (Vertices), and running
time in minutes (Time) for each dataset. Computation times
are dominated by depth maps generation from multi-view
stereo step. A typical computation time to compute depth
maps from 36 images of 6 Mpixels is about one hour on
a Duo E7400 2.80GHz computer, while visual hull compu-
tation and Poisson surface reconstruction from mixed point
cloud only cost a few minutes.

Table 2 lists running parameters of the proposed algo-
rithm for each dataset, including the number of selected cor-
relation images k, the threshold to select a best candidate
depth thres1, the size of NCC matching window m×m, the
size of expanding window M×M, the threshold to select a
reference depth value thers2, the depth interval length d, the
voting octree level V Td and its threshold thres3, the neigh-
borhood to compute surface normal R,N, and the level of
visual hull octree structure to be carved V Hd . See the corre-
sponding sections for details about the meaning and setting
method for these parameters.

6.1 Captain Sequence

The Captain object (see Fig. 11) is a 228mm tall, gray,
strongly diffuse Terra Cotta Warrior with lots of details and
complex topology. The object is placed on a turntable and a
sequence of images is taken with a fixed angle step which
is 10 degrees. Therefore, the Captain sequence contains 36
images which all have a resolution of 3088×2056 pixels.
Our approach requires accurate segmentation of each image
into silhouette. To facilitate silhouette segmentation, we use
a monochrome background in the setup of image acquisition
(see Fig. 3 and Fig. 11). So it is easy to find the object sil-
houette using standard background subtraction method. Fur-
thermore, our approach also requires that each input image
is accurately calibrated and we use an approach similar to
[10] to calibrate our system.

A complete reconstruction process for the Captain ob-
ject is presented in Fig. 12. To generate depth map from

Fig. 11 Four color images of the Captain Terra Cotta Warrior se-
quence.

multi-view stereo, the correlation for a given pixel is com-
puted with 4 neighboring views for a typical sequence of
36 images. Then a 10-level voting octree is built from the
depth maps and many outliers generated for miscorrelation
are eliminated by using the visual hull constraint and thresh-
olding the voting octree (thres3 = 4.0). The neighborhood
that is used for estimating surface normal for each 3D point
is defined by R = 2mm, N = 200. In order to compute a
PCSL, a 8-level visual hull octree structure is carved by a
PCST. See Table 2 for more details of the reconstruction pa-
rameters for the Captain sequence. The reconstructed model
(see Fig. 12 (e) and (f)) shows that the proposed approach
can not only recover minute details such as the details on
the face and the armor, but also capture correct topology of
a real object using both stereo and silhouette information.

6.2 BigHead Sequence

The BigHead object (see Fig. 13) is a very well textured ob-
ject which is quite suitable for stereo reconstruction. How-
ever, since the object support table is lack of texture which
cannot be reconstructed from multi-view stereo, this part can
only be recovered using silhouette information.

Complete reconstruction steps are demonstrated in Fig.
14. Since the body of the BigHead object is well textured,
a quite uniform PCST can be computed in this area which
can be seen in Fig. 14 (b). Fig. 14 (c) shows that most points
in the PCSL are at the support table of the object which is
the only textureless part of the object. And the reconstructed
model of the BigHead object by PSR method from the PC-
STSL (see Fig. 14 (d)) is demonstrated in Fig. 14 (e).

In Fig. 15 we present the comparison between the sur-
face model reconstructed by the proposed algorithm and the
model reconstructed by Hernandez et al. [10]. Since Her-
nandez et al. always use a regularization term in their snake-
based approach, some fine details might lose for this reason.
In Fig. 15 (c) we can see that our approach can reover more
accurate details than their method at the face of the object
(illustrated in red square).
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Table 2 Running parameters for the datasets used in our experiments. See text for more details.

dataset k thres1 m×m M×M thres2 d(mm) V Td thres3 R(mm) N V Hd
Soldier 4 0.6 11×11 21×21 3.0 3.0 10 6.0 2.0 200 9
Captain 4 0.6 11×11 21×21 3.0 3.0 10 4.0 2.0 200 8
BigHead 4 0.6 11×11 21×21 3.0 3.0 10 8.0 1.6 200 8

Skull 2 0.6 7×7 21×21 3.0 3.0 10 3.0 1.0 100 7
templeRing 4 0.6 5×5 5×5 3.0 3.0 9 3.9 1.0 100
dinoRing 4 0.5 5×5 5×5 2.5 4.0 9 4.0 1.8 180

dinoSparseRing 2 0.5 5×5 5×5 2.5 4.0 9 3.8 1.8 180

(a) (b) (c)

(d) (e) (f)

Fig. 12 The reconstruction steps for the Captain sequence. From (a)
to (f), visual hull, PCST, PCSL, PCSTSL, reconstructed model before
and after texturing mapping.

Fig. 13 Four color images of the BigHead sequence.

(a) (b) (c)

(d) (e) (f)

Fig. 14 The reconstruction steps for the BigHead sequence. From (a)
to (f), visual hull, PCST, PCSL, PCSTSL, reconstructed model before
and after texturing mapping.

6.3 Skull Sequence

The Skull object (see Fig. 16) is a plaster cast of a human
skull. The Skull dataset contains 16 images captured on a
ring around the object plus an additional 8 images captured
on a sparser ring at higher elevation angles. A more detailed
description of the Skull data set can be found in [32]. In our
case, although the visual hull is computed from all the 24
silhouettes, we just use the 16 images captured on a ring
to compute depth maps from multi-view stereo. The recon-
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(a) (b) (c)

Fig. 15 Comparison with a snake-based method by Hernandez et al.
(2004) for the BigHead sequence. (a) The reconstructed model using
our method (150000 vertices). (b) The reconstructed model using Her-
nandez et al.’s method (118344 vertices). (c) Two zoomed images, the
top one is ours and the bottom one is theirs.

Fig. 16 Two color images of the Skull sequence.

struction parameters for the Skull sequence can be seen in
Table 2.

In Fig. 17 we present complete reconstruction steps of
the Skull model. Starting from the visual hull (Fig. 17 (a)),
an oriented PCST is generated from multi-view stereo and
an oriented PCSL is computed by carving the visual hull
octree structure using the PCST. We can see in Fig. 17 (b)
and (c) that the PCSL can effectively capture the missing
shape information from stereo such as the inside border of
the support and the bottom of the Skull object. After the
PCST and the PCSL are mixed to generate a PCSTSL (Fig.
17 (d)), the PSR method is applied to convert the oriented
point cloud into a triangulated mesh model (Fig. 17 (e) and
(f)) from which we can appreciate the high quality of the
recovered surface such as the face and sutures of the object.

In Fig. 18 (a) and (b) we present the comparison between
the surface model reconstructed by the proposed algorithm
and the model reconstructed by Furukawa et al. [34]. One
limitations of their multi-view stereo method is that some
concavities may be too deep to be carved away by the graph
cuts. We can see in Fig. 18 (c) that the nose of the Skull
object is not correctly recovered for its limitations. And we
can see in Fig. 18 (a) that our method not only recovers the

(a) (b)

(c) (d)

(e) (f)

Fig. 17 The reconstruction steps for the Skull sequence. From (a) to
(f), visual hull, PCST, PCSL, PCSTSL, two views of the reconstructed
model.

deep concavities such as the nose of the Skull object, but
also outperforms Furukawa et al.’s method in reconstructing
a small concave structure near the nose of the object.

In Fig. 18 (a) and (d) we present the comparison between
the surface model reconstructed by the proposed algorithm
and the model reconstructed by Goesele et al. [16]. We can
see in Fig. 18 (d) that there are many holes in textureless ar-
eas of the Skull model reconstructed by Goesele et al.. How-
ever, our method recovers a complete and accurate model
since we use shape information both from stereo and silhou-
ette.

6.4 TempleRing Sequence

The temple and dino datasets (see Fig. 19) are provided by
the Middlebury benchmark [33]. The images of the datasets
were captured by using the Stanford spherical gantry and a
CCD camera with a resolution of 640×480 pixels attached
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(a) (b)

(c) (d)

Fig. 18 Comparisons with other image-based modeling techniques for
the Skull sequence. (a) The reconstructed model using our method. (b)
The reconstructed model using a method by Furukawa et al. (2006).
(c) Two zoomed portions of the Skull models recovered by our and
Furukawa et al.’s methods. (d) The reconstructed model using a method
by Goesele et al. (2006).

Fig. 19 Two objects of the Middlebury benchmark, temple and dino.

to the tip of the gantry arm. From the resulting images, three
datasets were created for each object, corresponding to a full
hemisphere, a single ring around the object, and a sparsely
sampled ring.

Our method is well-suited for viewpoints arranged in a
ring setup since the selecting correlation views is straight-
forward. Thus we perform our evaluation on the templeR-
ing, dinoRing, and dinoSparseRing datasets. The recon-
struction parameters for three datasets are presented in Ta-
ble 2. And the evaluation results of our algorithm for the
three datasets are shown in Table 3 which are evaluated on
the accuracy (Acc) and completeness (Comp) of the final
result with respect to a ground truth model, as well as pro-
cessing time (Time). We highlight the best performing al-
gorithm for each metric. Please note that the computation

(a) (b)

(c) (d)

Fig. 20 The reconstruction steps for the templeRing sequence. From
(a) to (d), visual hull, oriented PCST, and two views of the recon-
structed model.

time of our approach presented in Table 3 is a standard time
which is a little different from the time presented in Ta-
ble 1. And the format of computation time in Table 3 is
as hour:minute:second. According to Table 3, we can see
that our approach is comparable to current state-of-the-art
techniques, especially for the dinoRing dataset. Addition-
ally, our approach is also one of the most efficient meth-
ods among non-GPU methods for the three datasets and our
computation time is very close to that of Bradley et al.’s
method [17].

The temple object is a plaster reproduction of an ancient
temple which contains lots of geometric structure and tex-
ture. As it is very well textured, a quite uniform and dense
point cloud can be computed using our shape from stereo ap-
proach (see Fig. 20 (b)). Since most of the shape information
can be captured from multi-view stereo, there is no need to
generate a PCSL. Fig. 20 (c) and (d) present two views of the
reconstructed temple model which shows that our method is
able to reconstruct objects of non-trivial topology and with
fine details.
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Table 3 Evaluation results for the Middlebury benchmark datasets.

templeRing dinoRing dinoSparseRing
Acc Comp Time Acc Comp Time Acc Comp Time

Proposed approach 0.61 98.3% 19:26 0.38 99.4% 23:31 0.54 95.5% 7:24
Furukawa(2008) 0.47 99.6% 3:31:01 0.28 99.8% 5:00:34 0.37 99.2% 2:31:37

Furukawa(2007) [12] 0.55 99.1% 6:02:40 0.33 99.6% 9:04:00 0.42 99.2% 3:44:00
Furukawa(2006) [34] 0.58 98.5% 10:00:00 0.42 98.8% 15:00:00 0.58 96.9% 10:00:00

Bradley [17] 0.57 98.1% 11:21 0.39 97.6% 23:25 0.38 94.7% 7:06
Vu [35] 0.45 99.8% 1:33 0.53 99.7% 1:26

Hernandez [10] 0.52 99.5% 2:00:00 0.45 97.9% 2:06:00 0.60 98.5% 1:46:00
Goesele [17] 0.61 86.2% 34:00:00 0.46 57.8% 41:56:00 0.56 26.0% 14:03:12

6.5 DinoRing Sequence

The dino object is a white, strong diffuse plaster dinosaur
model without obvious texture. However, our shape from
multi-view stereo algorithm still reconstructs geometry of
most portion of the surface (see Fig. 21 (b)). Fig. 21 (c)
and (d) shows our final reconstruction result of the dinoRing
dataset and we can see that details such as the foot of the di-
nosaur have been ideally reconstructed. As our expansion-
based depth map estimation algorithm outputs dense and
accurate depth map efficiently which is crucial to the final
model, at the moment these results are submitted, the accu-
racy measurement of the dinoRing dataset ranks top 3 and
the completeness measurement ranks top 6. Furthermore,
the computation time of our approach is also very competi-
tive among non-GPU methods. See Table 3 for more details.

6.6 DinoSparseRing Sequence

Fig. 22 shows that reconstruction process for the di-
noSparseRing sequence. As this dataset just contains 16 im-
ages while our algorithm requires that each surface point is
seen in at least three views (a reference view and at least
two neighboring views), the recovered point cloud is much
sparser than that of the dinoRing sequence which is shown
in Fig. 22 (b). Fig. 22 (c) and (d) shows the final model.

7 Conclusions

We have developed a novel algorithm for 3D real object sur-
face model reconstruction from a sequence of calibrated im-
ages by fusing the shape information obtained from multi-
view stereo and silhouette. The algorithm first computes
an oriented point cloud on the object surface from cali-
brated images using texture information. Then, the silhou-
ette information is applied to recover the textureless and oc-
cluded surface areas. After the merging of the shape infor-
mation obtained from texture and silhouette, the PSR ap-
proach is applied to recover a complete and accurate tri-
angulated mesh model. The experimental results with sev-
eral real datasets demonstrate that the proposed approach

(a) (b)

(c) (d)

Fig. 21 The reconstruction steps for the dinoRing sequence. From (a)
to (d), visual hull, oriented PCST, and two views of the reconstructed
model.

can produce complete and accurate surface models. Accord-
ing to the evaluation results of the Middlebury benchmark,
the proposed approach is comparable to the state-of-the-art
image-based modeling techniques.

Future work should mainly focus on improving the ac-
curacy of the proposed approach which can be realized by
depth map subpixel optimization and depth map cleaning.
On one hand, a subpixel optimization step can be applied
to improve the accuracy of the estimated depth maps. On
the other hand, more effective approaches can be applied
to clean the depth maps without rejecting the correct shape
information such as using the visibility constraint [12], dis-
parity gradient limit constraint [36] and so on.
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(a) (b)

(c) (d)

Fig. 22 The reconstruction steps for the dinoSparseRing sequence.
From (a) to (d), visual hull, oriented PCST, and two views of the re-
constructed model.
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