
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 1

Double-sided 2.5D Graphics
Chih-Kuo Yeh, Peng Song, Peng-Yen Lin, Chi-Wing Fu, Chao-Hung Lin

and Tong-Yee Lee, Senior Member, IEEE

Abstract—This paper introduces double-sided 2.5D graphics, aiming at enriching the visual appearance when manipulating
conventional 2D graphical objects in 2.5D worlds. By attaching a back texture image on a single-sided 2D graphical object,
we can enrich the surface and texture detail on 2D graphical objects and improve our visual experience when manipulating
and animating them. A family of novel operations on 2.5D graphics, including rolling, twisting, and folding, are proposed in
this work, allowing users to efficiently create compelling 2.5D visual effects. Very little effort is needed from the user’s side. In
our experiment, various creative designs on double-sided graphics were worked out by the recruited participants including a
professional artist, which show and demonstrate the feasibility and applicability of our proposed method.

Index Terms—2.5D modeling, vector art, layering.

F

1 INTRODUCTION

2D or 2.5D graphics have attracted great interests in
a wide range of areas due to their simplicity and ele-
gance for delivering conceptual and aesthetic-stylized
art forms used in applications like manga, cartoon,
and desktop publishing design. In this domain, the
graphical elements in use are basically 2D meshes,
raster images, and vector graphics, where 3D infor-
mation is absent. However, the spatial scene can be
2.5D, meaning that layering can be used to arrange
and order the 2D graphical elements in the scene to
produce a visual illusion of proximity and occlusion
among the on-stage objects.

Recent research in 2.5D graphics usually focuses on
the creation of visual effects to bring out appealing
and interesting visual perception to the audience. For
instance, McCann and Pollard [1] developed the local
layering method to create flexible and partial layering
of 2D graphical objects, hence enabling more com-
pelling and complicated local occlusion effects among
the graphical elements in 2.5D worlds. Barnes et al. [2]
developed a video-based puppetry system for users
to quickly create interesting cutout-style and stop-
motion animations. More recently, Rivers et al. [3]
invented a new layer representation for 2.5D cartoon
models, so that 3D rotation effects can be achieved
even on 2D cartoon characters.

Following the spirit of these recent work in enrich-
ing 2.5D graphics, this paper proposes the novel idea
of making generic 2D graphics to be double-sided, so that
we can take advantage of the back image to provide
additional information for 2.5D graphics. Moreover,

• Chih-Kuo Yeh, Peng-Yen Lin, Chao-Hung Lin and Tong-Yee Lee are
with the Department of Computer Science and Information Engineer-
ing, National Cheng-Kung University, Taiwan, R.O.C.

• Peng Song and Chi-Wing Fu are with Nanyang Technological Uni-
versity, Singapore.

we develop a set of easy-to-use and user-manipulatable
visual effects: by using front and back images together,
these new operations can greatly improve our ability
to model and illustrate graphics in the 2.5D world:

• Rolling: Exposes a fraction of an object’s back
image along part of its silhouette to produce an
effect of a (small-scale) pseudo rotation;

• Twisting: Produces a winding visual effect lo-
cally/globally on double-sided graphics by mix-
ing elements from both front and back images;

• Folding: Partially or fully exposes the back image
of a 2D graphical object and makes it self-layered
in 2.5D. In addition, the folding boundary can be
reshaped to improve the visual effect of folding.

Furthermore, these operations can be applied lo-
cally or globally on a given double-sided graphic
tailored by the users for achieving their desired visual
effects. Compared to existing work on 2.5D graphics
modeling and manipulation, the main advantage of
our proposed method is that it does not require any
explicit/partial depth information or correspondence
sketches through multiple views. Yet it can produce
compelling visual effects on 2.5D graphics with very
little modeling effort. Moreover, a family of easy-to-
use operations is also designed and developed to
maximize the usability and utilization of the back
image. Lastly, various 2.5D graphical objects are pre-
sented in this work, and a number of participants,
including a professional artist, are also recruited to
try out our proposed interactive system.

The remainder of this paper is organized as follows.
After the related work section (Section 2), Section 3
describes the modeling of double-sided graphics, and
Section 4 presents our proposed operations to edit
double-sided 2.5D graphics. Section 5 describes the
user interface and the interaction procedures, whereas
Section 6 presents the implementation detail and
showcases the visual effects and interaction on as-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 2

sorted 2.5D graphics. At the end, Section 7 draws the
conclusion and discusses future extension work.

2 RELATED WORK

In recent years, 2.5D graphical elements have been
gaining increasing attention with several novel tech-
niques, e.g., [1], [3], [4], proposed to work on them. In
the work of McCann and Pollard [1], they proposed
a local layering technique, allowing 2D graphical
objects to overlap one another partially and locally.
This technique generalizes the standard depth order-
ing mechanism employed in many conventional 2.5D
modeling systems, enabling the design of more com-
plicated and compelling visual effects with layering.
More recently, McCann [4] proposed the soft stacking
idea, where layers/objects can be mixed with one an-
other in a volumetric or fog-like manner. By this, the
volumetric media can be brought to 2.5D worlds with
intriguing foggy effects. Another recent work is the
2.5D cartoon modeling method proposed by Rivers et
al. [3]. They created a 2.5D cartoon model by associat-
ing user-drawn strokes with depth layers. Following
the spirit of these 2.5D modeling work, we aim at
enriching the visual appearance when manipulating
2D graphical objects in 2.5D world. Consequently, our
work is more closely-related to [1] and [4] in terms
of producing 2.5D visual effects through developing
novel modeling strategies, rather than making 2.5D
models to be fully 3D-rotatable as in [3].

Sketch-based modeling and animation [5], [6], [7],
[8], [9], [10], [11], [12] is another stream of research
highly related to this work. Robert et al. [5], Igarashi
et al. [6], [11], and Karpenko et al. [9] proposed
various compelling sketch-based interfaces for 2.5D
or 3D modeling. These work focuses on providing
an intuitive user interface and inferring depth in-
formation from sketches that are drawn on single
or multiple views. Other than these work, Kho and
Garland [8] presented an interactive sketching system
that allows users to deform and edit 3D polygonal
models by drawing sketches on the 2D screen. Cherlin
et al. [7] developed a sketching interface that can
produce convoluted cartoon-like features using rota-
tional and cross-sectional blending surfaces. Nealen
et al. [10] proposed a method, called FiberMesh, to
build a 3D model by a collection of 3D curves. More
recently, Li et al. [12] developed techniques that create
cartoon facial animation from multi-view hand-drawn
sketches. On the contrary, the goal of our proposed
interface is to create interesting visual effects with
2.5D graphics by taking advantage of the back image
rather than creating 3D information. Hence, we do not
require inferring of depth information or sketching
correspondence through single or multiple views.

Other related research work includes the follow-
ings. Winnemöller et al. [13] proposed a system that
allows artists to design normal fields and texture

maps to achieve the desired effects on image space.
Di Fiore et al. [14] proposed the use of 3D skeletons
to generate in-between views in hand-drawn cartoon
by a multi-level 2.5D modeling approach. Igarashi et
al. [15] introduced an as-rigid-as-possible 2D shape
manipulation technique with multitouch capability,
while Wiley [16] presented a vector-graphics draw-
ing system, called Druid, which can handle self-
overlapping surfaces by labeling the intersections of
boundary curves. Eitz et al. [17] presented an image
editing tool with a sketch-based interface, allowing
users to deform and composite image regions in-
tuitively. Barnes et al. [2] developed a video-based
puppetry system for cutout-style and stop-motion
animations. Sýkora et al. [18] employed block-based
shape regularization to preserve local rigidity in hand-
drawn cartoon animations, while Baxter et al. [19]
developed a method that models a 2D animation as an
N-way morphing problem. In our proposed approach,
we develop novel ideas of making 2D graphics double-
sided and making use of the back images to produce a
novel set of visual effects for the 2.5D worlds. A family
of novel and easy-to-use operations is also designed
and proposed to support the creation of these visual
effects and the manipulation of the 2D shapes.

3 MODEL DOUBLE-SIDED 2.5D GRAPHICS

Input to our system are double-sided 2D graphics
with both front and back images (see the left and
right figures in Fig. 1). Comparing the two common
formats for 2D graphics, bitmap images require higher
resolution and anti-aliasing, while vector graphics, on
the other hand, are defined mathematically, and thus
can be smooth at any scale and resolution. To avoid
jaggy and blurry effects in editing, scalable vector
graphics (SVG) are adopted as our input.

Fig. 1: Left: the front image; right: the back image; middle:
the boundary-aware triangulation.

In addition, to support the proposed operations on
double-sided graphics, the input shape is first trian-
gulated to generate a 2D shape mesh. However, rather
than a regular triangulation, we propose to adapt the
triangulation to the boundary (see Fig. 1 (middle)), so
that the triangulation can lead to more cost-efficient
computation to support our proposed 2.5D operations
while preserving the smoothness in the deformed
silhouette. In detail, we employ the Triangle library

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 3

developed by Shewchuk [20] to produce this boundary-
aware triangulation. Lastly, attributes including the vis-
ible side (front or back) and uv-coordinates (i.e., the
coordinates in the parametric space) are attached to
each mesh vertex to facilitate further computation in
later stages (see next subsection).

4 OPERATIONS ON DOUBLE-SIDED 2.5D
GRAPHICS

A family of operations on double-sided 2.5D graphics
is proposed in this work, and this section describes
each of them in turn as follows.

4.1 The Rolling Operation
Texture rolling is often used as a visual trick to
create animation effects such as moving clouds and
words spinning around an object. Formulating this
rolling idea on double-sided graphics can enable us
to generate pseudo 3D rotation (see Fig. 2). In short,
such effect can be achieved by exposing (a fraction
of) an object’s back image along its silhouette, which
requires only very little amount of resource in our
case, i.e., the front and back images.

Fig. 2: The front image (the leftmost one) and the back
image (the rightmost one) are rolled along the silhouette to
generate a pseudo 3D rotation effect (middle).

In general, the rolling operation can be easily per-
formed on input graphics that are square or rectangu-
lar, but in 2.5D worlds, since the shape of 2D graphical
objects may not be that regular, the object boundaries
can be convex or concave, thus making rolling more
complicated to perform. To address this, our idea is
to first embed the given shape (for both the front and
back images) onto a rectangular domain by a mesh
parameterization process.

The procedure is as follows: First, the user can
optionally select (by marking on the SVG) part of
the input shape as the region-of-interest (ROI) for
performing rolling. In this way, we can localize the
effect of rolling to that part of the input shape. If
this substep is skipped (as in the case of Fig. 3),
the rolling operation affects the entire shape. After
that, the user is required to just successively mark
up four points, say a, c, b, and d, on the silhouette
of the ROI, which define the corners of a parametric
domain and the rolling direction. The rolling direction

a c

b d

() ()

() ()

u=0.0

v=1.0

u=0.5

v=1.0

u=0.0

v=0.0

u=0.5

v=0.0

Fig. 3: Left: Illustrations of the user-specified boundary
points, a, b, c and d, and the defined parametric space (u,v).
Right: illustration of rolling direction. The front and back
images are represented by red and blue colors, respectively.

is set to be perpendicular to the boundary lines, ab
and cd (see the red and blue boundary lines shown
on the left of Fig. 3), in the parametric domain. In
computing this parameterization, the goal is to find
a mapping that minimizes the distortion between the
original mesh and the parameterized mesh with fixed
and given boundaries, that are, ab, cd, ac, and bd.
Once these boundaries are fixed in the parametric
domain, we minimize the distortion by enforcing each
parameterized vertex ui to satisfy∑

uj∈N(ui)

(cotαij + cotβij)(ui − uj) = 0 , (1)

where N(ui) is the 1-ring neighborhood of vertex ui;
vertex ui is the corresponding vertex of vi in the
parametric domain; αij and βij are the angles at the
opposite sides of the edge (vi, vj) in the original mesh;
and the conformal weight cotαij + cotβij is adopted
to preserve the triangle shape in the parameterization
(see also [21]).

To efficiently perform rolling interactively, the
shape mesh with both the front and back images are
embedded and packed side-by-side in a common uv
parametric space with normalized range [0, 1]× [0, 1].
As shown in Figs. 3 and 4, the front and back images
are embedded in parametric range u: [0.0, 0.5] × v:
[0.0, 1.0] and u: [0.5, 1.0] × v: [0.0, 1.0], respectively.

After this parameterization, we can obtain
uniformly-packed front and back images (see the top
right of Fig. 4). Essentially, it is ready for rolling, but
applying rolling to such a parameterization may make
rolling appear like uniform translation of a plane.
Hence, we can optionally add depth cue into the
rolling by embedding a simple cylindrical mapping
into the parameterization as shown on the left hand
side of Fig. 4. By distorting the parameterization
by such a cylindrical mapping (see bottom right of
Fig. 4), we could introduce certain pseudo perspective
visual effect into the rolling operation.

Furthermore, since we use SVG as the input shape
data structure in our implementation, we actually can
examine its patch-based hierarchy (see Figs. 4 and 5),
and then perform the rolling operation by sliding
a clipping window in the parametric space. Figs. 4

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 4

and 5 show an example, where the brighter region is
the clipping window (the amount of sliding is based
on the magnitude of rolling), and those objects who
overlap with the window boundary are clipped in
the parametric space before taken to be rendered.
Here we apply the polygon clipping algorithm by
Vatti [22] to efficiently clip these geometric objects
that are represented by discrete and closed polygons.
In addition, since the geometric objects in SVG are
stored in a hierarchical structure, we use a depth-
first search strategy to look for overlapping shapes
and thus can skip those nodes whose ancestors are
completely inside or outside the clipping window.

To further enrich the visual quality of rolling, we
may additionally put in shading as a depth cue.
Here we define a shading map to make the colors
in the middle of the rolling region to be brighter
and those colors near the boundaries to be darker
(see also the results shown in Fig. 2). This shading
map can be efficiently obtained by utilizing the shape
parameterization. Since the shape mesh is embedded
in parametric range u: [0.0, 0.5] × v: [0.0, 1.0], we
can define the pixel intensity in the shading map as
ShadingMap(p) = 1 − 2(2u(p) − 0.5)2, where u(p) is
the u-component of pixel p in case of a horizontal
rolling (or we use the v-component in case of a vertical

Front side

Back side

Cylinder

Fig. 4: The parametric space. The front (red) and back (blue)
images are embedded side-by-side in a common parametric
space. Hence, rolling can be performed by sliding a clipping
window (the brighter region) in this space.

....
....

Fig. 5: Illustration of hierarchical SVG clipping. Left: the
clipping of the front graphics; center: the clipping of the
back graphics; right: the clipping result, which can still be
represented as a hierarchical SVG.

rolling). By this means, we can simulate 3D shading
with the rolling effect. Lastly, it is worth noting that
the silhouette and shape mesh of the rolling object
is unchanged during the rolling because to perform
the rolling, we only need to modify the way we map
the SVG onto the ROI. Hence, we do not require
re-triangulation and re-parameterization during the
rolling action, and can adjust the amount of rolling
interactively in our system. Note that boundary-aware
triangulation is just a one-time offline pre-process
for each input shape while the re-parameterization is
done only after marking up the four corner points.

4.2 Twisting Operation

Twist is a characteristic feature, which has been ex-
plored in many different research areas in computer
graphics such as free-form object deformation [23],
virtual cloth simulation [24], and sketch-based model
deformation [8]. In conventional 2D cartoons, twist
has also been used to produce an intriguing, provoca-
tive effect that is not necessarily physically-based (see
Fig. 6 for examples). Using double-sided graphics,
we can create and simulate such a visual effect by
mashing the front and back images.

Fig. 6: Twist examples.

Our proposed method is described as follows. First,
a family of cosine curves, denoted by fk with fre-
quency α and phase (shift) β, is created to model the
front and back region boundaries (see Fig. 7):

fk = cos(αx− kβ), 0 < β < π , (2)

and the first curve (last curve likewise) is specially
modeled as

fs =

{
f−1 if x > x0

−1 otherwise , (3)

where x0 = (π− β)/α is the x-coordinate of the point
on f−1 with y = −1.

Observing that every visible element on a graphical
object being twisted comes either from the front or
back side, the front and back images can be inter-
changed in the twisting region (see the second row
in Fig. 7). The divisions are based on the intersections
between neighboring fk’s:{

sk = (k + 1/2) β/α
ek = π/α + (k − 1/2) β/α .

(4)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 5

To derive sk, we base on the fact that s0 is mid-
way between the peaks of f0 and f1 (see Fig. 7) while
successive sk can be shifted from s0 by kβ/α. As
for ek, it can be computed by the fact that the first
intersection point (π/2α + kβ/α) between fk and the
x-axis is always mid-way between ek and sk. Hence,
we can mix front and back images within x ∈ [sk, ek],
while the other ranges involve only a single side.

In order to deform the original mesh to these
twisted boundaries, each mesh vertex within the
twist region has to be deformed by perturbing its y-
coordinates (see again Fig. 7) based on the [sk, ek]-
range that it falls into. In detail, we first determine
the pair of corresponding boundary curves (among
the f ’s) that bound the vertex point, and compute
the two bounding positions on the curve pairs, which
have the same x-coordinate as the vertex. After that,
the y-coordinate of the vertex can be perturbed by
interpolating between the two bounding positions on
the curves to produce the twisting shape, see Fig. 7 for
the result. For non-rectangular shape, we additionally
have to apply the parameterization model described
in Section 4.1 to scale the interpolation, so that we can
maintain the original shape after the twist, see the last
row in Fig. 18 for an example.

After fixing the twisting shape, the next step is
to distort the texture image. Similar to mesh defor-
mation, texture distortion only takes place along y.
Hence, we can first find the twisting curves in the
image domain and the texture coordinates along y
for each vertex can be computed by interpolating
between the texture coordinates of its corresponding
two bounding positions, see also Fig. 7.

Another example is shown in Fig. 8 where we adjust

x

y
f0 f1 f2 f3 f4

fs

0
2w

E/D

s0 s1 s2 s3 s4

e0 e1 e2 e3

-1

1

re
su

lt
fr

on
t

ba
ck

x0

Fig. 7: Modeling the twisting effect in 2D.

Fig. 8: Twisting results. From left to right, the α values are
1.0π, 1.6π, 2.1π, 2.8π, 2.8π, and 2.8π; and the β values
are 0.5π, 0.5π, 0.5π, 0.5π, 0.4π, and 0.6π.

both α and β. In practice, we control the number of
front and back regions by α and fix β (like a tightening
factor) to be 0.5π. Lastly, since the twisting effect may
still look flat, we can bump the normal of each vertex
on the twisted mesh according to its nearest distance
to the corresponding twisting boundary, and add
shading effect to improve the perception of twisting.

4.3 Folding Operation

Folding is a useful operator employed in a num-
ber of 2D or 2.5D applications, such as the work
of Beaudouin-Lafon [25] on managing windows in

(a) (b)

(c) (d)

Fig. 9: Folding a double-sided graphics. (a) The back
graphics; (b) the front graphics and the folding line (in
red); (c) forward folding result before refining the boundary
along the folding line; (d) after refining the boundaries.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 6

desktop interfaces and the work of Igarashi and Mi-
tani [26] on manipulating deformable objects. In this
work, folding is proposed to be used to partially or
fully expose the back side of a double-sided graphical
object. The procedure is outlined in Fig. 9. After the
user sketches a folding line and initiates a folding
action (Fig. 9b) (forward/backward folding), our sys-
tem bends the corresponding region(s) and creates a
local layering (Fig. 9c). Further than that, we can also
deform the boundaries on the folding line to make the
results appear more natural (Fig. 9d).

In detail, this operation is implemented as follows.
First, the user (optionally) selects an ROI and then
specifies a folding line by sketching. Our system
then computes the intersections between the folding
line and the shape mesh within the ROI, and re-
triangulates the shape mesh to make it pass through
the folding line. After that, the user can select an
object part to fold and specify the folding direction,
i.e., forward or backward folding. Then, the selected
part can be interactively bended to create a mirror-
reflected local layering about the folding line. In ad-
dition, a tunable refinement curve can also be applied
in terms of a handle constraint to locally deform the
mesh by using the shape manipulation engine (see
subsection 6.2).

P1 P2

C1 C2

� ��������������������������

Fig. 10: The generation of a cubic Bézier curve for deform-
ing the boundaries on the folding line.

In generating the refinement curve, a cubic Bézier
curve is used. As illustrated in Fig. 10, the intersection
between the folding line and shape mesh is denoted
by the line segment P1 − P2 with additional control
points, C1 and C2, for the Bézier curve. In our system,
the two parameters, angle Θ and length |P1C1|, are
tunable, and the default values for them are 45 de-
grees and |P1P2|/2, respectively. Besides, we fill the
enlarged area resulted from the refinement by de-
forming the related region from the back (for forward
folding) or front image (for backward folding).

Furthermore, to generate a folding animation, our
system allows us to set keyframes for folding. In de-
tail, we can smoothly compute the in-between folding
lines along the boundary of the ROI, see Fig. 11,
and thus animate the folding over time. Note further
that by using the boundary-aware triangulation, we
can efficiently preserve the shape silhouette while
providing sufficient geometric information (with not
too many triangles) for performing the three proposed
interactive operations.

Folding line 1

Folding line 2

Fig. 11: Illustration of keyframe setting. The in-between
folding lines along the boundary of the ROI can be gener-
ated to produce a folding animation. Note that the black
bounding circle outlines the shape of the orange, which
is the actual 2D graphics that demonstrate this keyframe
animation, see 1st row in Fig. 16.

Fig. 12: Our user interface. Easy-to-use sketching and
markup are provided as interactive inputs. For instance,
after sketching a folding line (in red) on the graphics, we
can update the mesh and render the result in real-time.

5 USER INTERFACE AND INTERACTION
SCENARIOS

Our user interface is shown in Fig. 12. All the oper-
ations can be interactively performed with real-time
visual responses. Thus, the users can interactively and
intuitively edit the double-sided graphics, which is
very helpful for them to design and create their own
graphical work. To provide an easy-to-use interface,
we use sketching and markup as interactive inputs
instead of low-level manipulation through primitive
elements (e.g., vertex and face) on the shape mesh.
Besides, the users can also animate the double-sided
graphics by time-stamping poses of the shape. The
time-stamped poses can act as keyframes, so that
our system can generate animations by interpolat-
ing user mark-up and sketch information in-between
keyframes. In the following, the interaction scenarios
for the proposed operations are described.

Rolling in action. As shown in Fig. 13, the rolling
operation can be done by the following steps: First,
we define the ROI by sketching a rough curve or a
closed polyline. Next, we mark up four corner points
on the silhouette of the ROI, and our system can then
compute the parameterization and the rolling direc-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 7

Fig. 14: Twisting example. Left-to-right: sketch two boundary lines on the graphics, and then drag the mouse (to the
left) to interactively adjust the amount of twisting.

tion. After that, we can drag the mouse left-to-right
or right-to-left to produce and interactively adjust the
(amount of) rolling effect. This handy operation can
quickly create pseudo 3D rotation on vector graphics.

Twisting in action. Twisting is performed as follows.
First, we can mark up a pair of lines on the input
shape to define the boundaries for twisting (see the
pair of red lines in Fig. 14 (leftmost)). Then, we can
drag the mouse in a direction roughly parallel to
the lines to produce the twisting effect (see again
Fig. 14). The magnitude of drag controls the amount
of twisting and dragging to different directions can
produce clockwise or anti-clockwise twisting.

Folding in action. As shown in Fig. 12, the folding
operation can be done by simply sketching a folding
line (the red line in the figure) after marking up the
ROI. Then, our system can create and render the fold-
ing result with local layering in real-time. Moreover,
we can also enable the user to tune the refinement
curve to smooth the folding boundary. Lastly, one can
also fold the same object multiple times by iteratively
applying the folding operator with different folding
lines, see Fig. 15 for an example, where we fold the
snake object multiple times at different locations.

Fig. 13: Rolling example. Left: sketch to select the ROI
(note that this rabbit figure is a vector graphics composed
of two ears, a face, etc.; hence a lasso can appropriately
select its face); right: drag the mouse to roll the ROI.

6 IMPLEMENTATION AND RESULTS

In this section, we first describe our system implemen-
tation with some performance data. Then, we present
the shape manipulation engine to support the 2.5D
operations. After that, we present the experimental
results on using our system.

6.1 System implementation
Our proposed system is implemented and evaluated
on a personal computer with a 2.66 GHz CPU and 4
GB memory. On average, for a double-sided graphical
object modeled with a shape mesh of 3, 800 triangles
and around 40, 000 line segments on both the front
and back SVG graphics, the computation time for the
preprocessing (i.e., mesh parameterization) and the
mesh manipulation engine (see next subsection) are
around 0.08 seconds and 0.018 seconds, respectively.
In addition, the time taken for performing the rolling,
twisting, and folding operations are 0.195 seconds,
0.035 seconds, and 0.327 seconds, respectively, thus
showing that our system is able to provide real-time
visual responses upon users’ editing actions.

6.2 Shape Manipulation
To support the proposed 2.5D operations, we also
need a basic engine for performing 2D shape manip-
ulation: rotate, squash, stretch, and deform an input

Fig. 15: Folding a double-sided graphics multiple times.
Left: the input object and the first folding line (in red);
middle: the result after the first folding and the second
folding line; right: the final result after the second folding.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 8

shape according to the user’s specified point handles.
Regarding this, we apply and integrate the as-rigid-
as-possible shape manipulation method by Igarashi et
al. [15] and the concept of conformal energy by Zhang
et al. [27], and then tailor the engine for SVGs.

Since the input SVG is mathematically described,
our shape manipulation engine begins by first con-
verting the mathematical descriptions, i.e., B-spline
curves in SVG, to line segments, and then construct-
ing the boundary-aware triangulation based on the
current screen resolution. Without loss of generality,
the shape mesh is denoted by M = {V,E,F}, where
V = [vT

0 ,v
T
1 , ...v

T
n−1] denotes a set of vertex v = (x, y)

in R2, E denotes a set of edges, and F denotes a set
of triangles (faces). The conformal energy introduced
in [27] is utilized to preserve the shape in deforma-
tion, i.e., minimizing the shape distortion between the
original and deformed triangles. Specifically, a vertex
in a shape mesh is transformed by[

s −r
r s

] [
x
y

]
+

[
u
v

]
=

[
x′

y′

]
, (5)

where s and r represent the scaling and rotation fac-
tors, respectively, and [u, v]t is the translation vector.
Let vi1 ,vi2 ,vi3 be the vertices of face f , and define

Af =


xi1 −yi1 1 0
yi1 xi1 0 1
...

...
...

...
xi3 −yi3 1 0
yi3 xi3 0 1

 , bf ′ =


x′
i1

y′i1
...

x′
i3

y′i3

 , (6)

we can obtain the equation Af [s, r, u, v]
T = bf ′ . Let

Ωs = ∥(Af (A
T
f A

T
f)

−1AT
f − I)bf ′∥2, where the opti-

mization [s, r, u, v]T = (AT
f Af)

−1AT
f bf ′ , see also [27].

Note that Ωs is used for measuring the conformal
error between the original triangles and the corre-
sponding deformed triangles under optimal scaling,
rotation, and translation. In addition, the deformed
mesh, say M′, must satisfy the given handle con-
straints. Let H be a set of handle positions that are
used to manipulate or deform the input shape. ΩH =∑

i∈H ∥v′
i−Hi∥2, where Hi is the i-th handle position.

The deformed mesh M′ is then solved by minimizing∑
f Ωs+wΩH , where w = 1000 in all our experiments.

This optimization can be solved by a linear least-
squares equation. As mentioned in [15], the above
solver does not yield an as-rigid-as-possible deformed
mesh, and thus requires a second optimization step
to adjust the scale of the deformed mesh M′. In
Equation 5, the two-by-two matrix, say Tf , denotes
its similarity transformation with s and r, and its
rotation component T′

f can be found by re-scaling Tf

by 1/
√
s2 + r2. Then, we formulate Ωξ as:

Ωξ =
∑

(i,j)∈E(f)

∥(v′
i − v′

j)−T′
f (vi − vj)∥2 , (7)

where Ωξ is used for measuring the scaling error
between the original edges and the corresponding
deformed edges under optimal similarity transforma-
tion, and E(f) refers to the set of edges around face
f . In the second step, we minimize

∑
f Ωξ+wΩH and

compute the final deformed mesh M′′.

6.3 Results

To demonstrate the feasibility of our proposed system,
we further recruited seven participants, including one
professional artist, whose ages range from 20 to 38.
After about 10 minutes’ tutoring time on the sys-
tem usage, each participant was given 15 minutes to
practice and try the system followed by another 15
minutes to prepare their designs and corresponding
materials. After that, the participants can use our
system to make up their designs. Figs. 16 and 18 show
some example designs, which took the participants
about 3 minutes to create while the more complex de-
sign shown in Fig. 17 took the participant 15 minutes’
time to finish.

As demonstrated in Fig. 16, the artist used the
folding operation to create an animation showing the
peeling of an orange, pea husking, and the peeling
of a banana. He took about 3 minutes, 1.5 minutes,
and 2 minutes to create these animations (from top
to bottom), respectively. The results shown in Fig. 18
were created by other participants; these animation
results were created in about 3 minutes, 2 minutes,
1 minute, 1.5 minutes, 20 seconds, and 20 seconds
(from top to bottom), respectively. Operations includ-
ing rolling, folding, twisting, and mesh manipulation
were all involved in these examples. Fig. 17 shows a
more complicated example created by the artist; it in-
volves the use of multiple double-sided graphics with
layering. To create this work, the folding animation on
each double-side graphics is first created separately
by using our system; then, these animations are com-
bined with a specified rendering order by layering.
These participant-made results showed that a variety
of interesting effects and animations can be easily and
efficiently created by our system.

6.4 Discussion on limitations

Our current system has certain limitations.

• First, we do not fully address the collision prob-
lem in folding since it is not the focus of this
work. Hence, if the users do not explicitly control
the layering by hand, self-collision or collision
between objects may occur. However, we would
like to highlight that by means of the interactive
controls, one can usually interactively adjust the
folding (folding direction, folding order, and lay-
ering control) to avoid the collision. In addition,
for the case of collision between two different

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 9

Fig. 16: Folding animations created by an artist. Top: peeling an orange; three rolling regions are defined; Middle:
husking a pea; Bottom: peeling a banana; two rolling regions are defined.

Fig. 17: Animation of flower blossoming created by the artist. This work is done by layering multiple double-sided
graphics. The folding operation is applied to each doubled-sided graphics first, and the folding results are then combined
to generate this animation.

objects, more flexible multi-layer or local layer-
ing operations can facilitate the handling of this
problem. We leave this as future work.

• Second, when applying rolling or twisting to
objects with concave or large protrusion struc-
tures, visual artifacts may occur, see Fig. 19 for
an example, where sharp features such as the
thunders on the cloud image are rather distorted.

• Lastly, when rolling is applied to a shape (or
its local region) that is not logically (or at least
causally) associated with a certain surface of rev-
olution, e.g., the nose on the donkey’s face shown
in Fig. 20, such rolling is likely not sensible and
the result could look very weird.

7 CONCLUSIONS AND FUTURE WORK
This paper introduces a novel model of 2.5D graphics,
namely double-sided 2.5D graphics, which allows us

to bring in novel 2.5D effects through rolling, twisting,
and folding. Similar to the spirit of local layering, this
proposed idea can help enrich the way we model,
render, and animate graphics in 2.5D worlds; in par-
ticular, we can perform the proposed operations in-
teractively with our system. Key contributions in this
paper include the idea of enriching 2.5D graphics with
back images, the boundary-aware triangulation to effi-
ciently preserve the shape silhouette while supporting
the 2.5D operations, a tailored shape manipulation
engine that integrates previous techniques for SVGs,
a set of novel visual effects, i.e., rolling, twisting, and
folding, produced from double-sided 2.5D graphics,
and a family of easy-to-use user interface operations
to produce these effects efficiently. Very little model-
ing and editing effort is needed from the user.

The effectiveness of our approach is demonstrated
with several examples presented in this paper, includ-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 10

ing those on various cartoon characters, fruit graph-
ics, and a cola bottle. Furthermore, we also provide
average-time statistics on using our system, which
shows that our approach can be implemented as an
interactive system. Lastly, we recruited a number of
participants including a professional artist to try out
our system; a variety of creative works on double-
sided graphics were designed and created by them
with our system, which demonstrate the feasibility,
applicability, and efficiency of this work.

In the future, we plan to develop a nonhomoge-
neous parameterization approach that can efficiently
preserve the shapes of highly salient objects by propa-
gating the distortions to the homogeneous regions, as
inspired by the work of Tzur and Tal [28]. In addition,
we would also like to develop layer control operations
similar to those in [29] to extend our framework to
handle multi-layer double-sided graphics for design-
ing more complex 2.5D graphics. Lastly, we also plan
to study rendering methods to add shadows or halos
around the silhouette of the folded parts in order to
enhance the visual perception of folding (we thank
one of the reviewer for this suggestion).

ACKNOWLEDGMENTS

We would like to thank the designer (membership
No. 905020928 in www.nipic.com) for sharing the cute
cartoon rabbit shown in Fig. 12, artist Paul Tarnowski

(a) (b)

(c) (d)

Fig. 19: Failure example #1: Rolling a cloud shape (with
protrusion structures). (a) front graphics; (b) back graphics;
(c) result of rolling to the left; and (d) result of rolling to
the right.

Fig. 20: Failure example #2: Applying rolling to the nose of
the donkey (not derived from a surface of revolution). Left:
input image (same for both front and back); right: result.

for the hammer throwing cartoon shown in Fig 6 (li-
cense obtained from www.CartoonStock.com), and also
the reviewers for the many constructive comments
that help improve the paper. This work was sup-
ported in part by the National Science Council (con-
tracts NSC-99-2221-E-006-066-MY3, NSC-100-2628-E-
006-031-MY3, and NSC-100-2221-E-006-188-MY3), Tai-
wan, and MOE Tier-1 (RG 13/08) and MOE Tier-2
(MOE2011-T2-2-041), Singapore.

REFERENCES

[1] J. McCann and N. Pollard, “Local layering,” ACM Trans. on
Graphics (SIGGRAPH 2009), vol. 28, no. 3, article no. 84, 2009.

[2] C. Barnes, D. E. Jacobs, J. Sanders, D. B. Goldman,
S. Rusinkiewicz, A. Finkelstein, and M. Agrawala, “Video
puppetry: A performative interface for cutout animation,”
ACM Trans. on Graphics (SIGGRAPH Asia 2008), vol. 27, no. 5,
article no. 124, 2008.

[3] A. Rivers, T. Igarashi, and F. Durand, “2.5D cartoon models,”
ACM Trans. on Graphics (SIGGRAPH 2010), vol. 29, no. 4, article
no. 59, 2010.

[4] J. McCann, “Image editing and creation with perception-
motivated local features,” 2010, PhD Dissertation: CMU-CS-
10-130.

[5] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “Sketch: An
interface for sketching 3D scenes,” ACM Trans. on Graphics
(SIGGRAPH 1996), pp. 163–170, 1996.

[6] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching
interface for 3D freeform design,” ACM Trans. on Graphics
(SIGGRAPH 1999), pp. 409–416, 1999.

[7] J. J. Cherlin, F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-
based modeling with few strokes,” in Proceedings of the 21st
spring conference on Computer graphics, 2005, pp. 137–145.

[8] Y. Kho and M. Garland, “Sketching mesh deformations,” in
ACM Symposium on Interactive 3D graphics and games, 2005, pp.
147–154.

[9] O. A. Karpenko and J. F. Hughes, “SmoothSketch: 3D free-
form shapes from complex sketches,” ACM Trans. on Graphics
(SIGGRAPH 2006), vol. 25, no. 3, pp. 589–598, 2006.

[10] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “FiberMesh:
designing freeform surfaces with 3D curves,” ACM Trans. on
Graphics (SIGGRAPH 2007), vol. 26, no. 3, article no. 41, 2007.

[11] Y. Gingold, T. Igarashi, and D. Zorin, “Structured annotations
for 2D-to-3D modeling,” ACM Trans. on Graphics (SIGGRAPH
Asia 2009), vol. 28, no. 5, article no. 148, 2009.

[12] X. Li, J. Xu, Y. Ren, and W. Geng, “Animating cartoon faces by
multi-view drawings,” Computer Animation and Virtual Worlds,
vol. 21, no. 3-4, pp. 193–201, 2010.

[13] H. Winnemöller, A. Orzan, L. Boissieux, and J. Thollot, “Tex-
ture design and draping in 2D images,” Computer Graphics
Forum, vol. 28, no. 4, pp. 1091–1099, 2009.

[14] F. D. Fiore, P. Schaeken, K. Elens, and F. V. Reeth, “Automatic
inbetweening in computer assisted animation by exploiting
2.5D modelling techniques,” Proc. of Computer Animation 2001,
pp. 192–200, 2001.

[15] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-
possible shape manipulation,” ACM Trans. on Graphics (SIG-
GRAPH 2005), vol. 24, no. 3, pp. 1134–1141, 2005.

[16] K. Wiley, “Druid: Representation of interwoven surfaces in
2 1/2 D drawing,” Ph.D. dissertation, University of New
Mexico, 2006.

[17] M. Eitz, O. Sorkine, and M. Alexa, “Sketch based image
deformation,” Proceedings of Vision, Modeling and Visualization
(VMV), pp. 135–142, 2007.

[18] D. Sýkora, J. Dingliana, and S. Collins, “As-rigid-as-possible
image registration for hand-drawn cartoon animations,” Pro-
ceedings of International Symposium on Non-photorealistic Anima-
tion and Rendering, pp. 25–33, 2009.

[19] W. Baxter, P. Barla, and K. Anjyo, “N-way morphing for 2D
animation,” Computer Animation and Virtual Worlds, vol. 20, no.
2-3, pp. 79–87, 2009.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 11

[20] J. R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator,” in Applied Computa-
tional Geometry: Towards Geometric Engineering, ser. Lecture
Notes in Computer Science, M. C. Lin and D. Manocha, Eds.
Springer-Verlag, May 1996, vol. 1148, pp. 203–222, from the
First ACM Workshop on Applied Computational Geometry.

[21] M. S. Floater and K. Hormann, “Surface parameterization: a
tutorial and survey,” Advances in Multiresolution for Geometric
Modelling, pp. 157–186, 2005.

[22] B. R. Vatti, “A generic solution to polygon clipping,” Commu-
nications of the ACM, vol. 35, no. 7, pp. 56–63, 1992.

[23] G. M. Draper and P. K. Egbert, “A gestural interface to free-
form deformation,” in Proceedings of Graphics Interface, 2003,
pp. 113–120.

[24] P. Decaudin, D. Julius, J. Wither, L. Boissieux, A. Sheffer, and
M.-P. Cani, “Virtual garments: A fully geometric approach for
clothing design,” Computer Graphics Forum (Eurographics 2006),
vol. 25, no. 3, pp. 625–634, 2006.

[25] M. Beaudouin-Lafon, “Novel interaction techniques for over-
lapping windows,” in ACM symposium on User interface soft-
ware and technology, 2001, pp. 153–154.

[26] T. Igarashi and J. Mitani, “Apparent layer operations for the
manipulation of deformable objects,” ACM Trans. on Graphics
(SIGGRAPH 2010), vol. 29, no. 4, article no. 110, 2010.

[27] G.-X. Zhang, M.-M. Cheng, S.-M. Hu, and R. R. Martin,
“A shape-preserving approach to image resizing,” Computer
Graphics Forum, vol. 28, no. 7, pp. 1897–1906, 2009.

[28] Y. Tzur and A. Tal, “FlexiStickers: photogrammetric texture
mapping using casual images,” ACM Trans. on Graphics (SIG-
GRAPH 2009), vol. 28, article no. 45, 2009.

[29] C. Fu, J. Xia, and Y. He, “LayerPaint: a multi-layer interactive
3D painting interface,” in ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI), 2010, pp. 811–820.

Chih-Kuo Yeh is a PhD student in Depart-
ment of Computer Science and Information
Engineering, National Cheng-Kung Univer-
sity, Taiwan. He received the BS degree in
Department of Information Engineering and
Computer Science from Feng Chia University
in 2005 and the MS degree in Institute of
Bioinformatics from National Chiao Tung Uni-
versity in 2007. His research interests include
scientific visualization, computer animation
and computer graphics.

Peng Song is a PhD student in the school
of computer engineering at the Nanyang
Technological University in Singapore. He
received his B.S. in Automation from Harbin
Institute of Technology (2007), and M.S.
in Control Science and Engineering from
Harbin Institute of Technology Shenzhen
Graduate School (2010). His research inter-
ests include human computer interaction and
computer graphics. He is a student member
of ACM.

Peng-Yen Lin received the BS degree in
Department of Computer Science and Infor-
mation Engineering from the National Cen-
tral University, Taiwan in 2009, and the MS
degree in Computer Science and Information
Engineering from the National Cheng-Kung
University, Taiwan in 2011. His research in-
terests include computer graphics and car-
toon animation.

Chi-Wing Fu is an assistant professor in
the school of computer engineering at the
Nanyang Technological University in Singa-
pore. He received his B.Sc. and M.Phil. in
Computer Science and Engineering from the
Chinese University of Hong Kong in 1997
and 1999, respectively, and his Ph.D. in
Computer Science from Indiana University
in Bloomington in December, 2003. His re-
search interests include computer graphics,
visualization, and human-computer interac-

tion. He is a member of ACM and the IEEE Computer Society.

Chao-Hung Lin received his MS and PhD
degree in computer engineering from Na-
tional Cheng-Kung University, Taiwan in 1998
and 2004, respectively. He is currently an
associate professor in the department of
geometrics at National Cheng-Kung Univer-
sity in Tainan, Taiwan. He leads the Digital
Geometry Laboratory, National Cheng-Kung
University. His research interests include dig-
ital geometry processing, digital map gener-
ation, information visualization, and remote

sensing. He is a member of IEEE and ACM.

Tong-Yee Lee received the PhD degree
in computer engineering from Washington
State University, Pullman, in May 1995. He is
currently a distinguished professor in the De-
partment of Computer Science and Informa-
tion Engineering, National Cheng-Kung Uni-
versity, Tainan, Taiwan, ROC. He leads the
Computer Graphics Group, Visual System
Laboratory, National Cheng-Kung University
(http://graphics.csie.ncku.edu.tw/). His cur-
rent research interests include computer

graphics, nonphotorealistic rendering, medical visualization, virtual
reality, and media resizing. He is a senior member of the IEEE and
the member of the ACM.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 2012 12

Fig. 18: Animations created by general participants (non-artist). 1st row: a rabbit animation created by combining
rolling, folding, and mesh manipulation. 2nd row: a cartoon character (mushroom man) animation created by combining
rolling and mesh manipulation. 3rd row: a bottle animation created by combining rolling and mesh manipulation. 4th

row: a cartoon character animation created by combining folding and mesh manipulation. 5th row: a ghost animation
created by rolling. 6th row: twisting the hair of a cute girl character. Note that for each result that involves rolling (1st,
2nd, 3rd, and 5th rows), we draw green dots to indicate the corresponding four corner points for rolling on the base
graphics (1st column); all these results are done with a set of four corner points except the mushroom man on 2nd row,
where we use two sets of corner points simultaneously to create more lively rolling on both of its face and hat.

