
Computational Interlocking Furniture Assembly

Chi-Wing Fu∗

Nanyang Technological University
Peng Song∗

University of Science and Technology of China

Xiaoqi Yan Lee Wei Yang Pradeep Kumar Jayaraman
Nanyang Technological University

Daniel Cohen-Or
Tel Aviv University

Figure 1: Some snapshots showing the assembly of MULTI-FUNCTION TABLE. Our method can plan a network of joints (e.g., Figure 2) that
globally interlocks the component parts in the assembly; the input component parts are just simple 3D shapes without joint geometry.

Abstract

Furniture typically consists of assemblies of elongated and planar
parts that are connected together by glue, nails, hinges, screws, or
other means that do not encourage disassembly and re-assembly.
An alternative approach is to use an interlocking mechanism, where
the component parts tightly interlock with one another. The chal-
lenge in designing such a network of interlocking joints is that local
analysis is insufficient to guarantee global interlocking, and there
is a huge number of joint combinations that require an enormous
exploration effort to ensure global interlocking. In this paper, we
present a computational solution to support the design of a network
of interlocking joints that form a globally-interlocking furniture as-
sembly. The key idea is to break the furniture complex into an
overlapping set of small groups, where the parts in each group are
immobilized by a local key, and adjacent groups are further locked
with dependencies. The dependency among the groups saves the
effort of exploring the immobilization of every subset of parts in
the assembly, thus allowing the intensive interlocking computation
to be localized within each small group. We demonstrate the effec-
tiveness of our technique on many globally-interlocking furniture
assemblies of various shapes and complexity.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Curve, surface, solid, and object representations

Keywords: interlocking structure, furniture, joint, assembly

1 Introduction

Furniture generally refers to movable objects designed for support-
ing common human activities such as seating, storage, and office

∗joint first authors

work. Furniture is typically an assembly of elongated and planar
parts that are connected together in various ways, for example, by
glue, nails, hinges, and screws. However, these common connec-
tors do not encourage furniture disassembly and re-assembly, and
often harm the external appearance of the furniture and, in general,
the aesthetics of the design [Postell 2012].

An alternative approach is to use an interlocking mechanism and
design interlocking furniture, where the component parts tightly in-
terlock with one another by a network of joints (see Figure 2). This
can be achieved only by a global interlocking scheme rather than
by an aggregate of local components [Lau et al. 2011]. Such inter-
locking furniture can be disassembled only through certain orders,
starting from a specific single key, which is the only free-to-move
part in the furniture assembly. This key should be taken out from
the assembly in order to release the global interlocking.

Interlocking furniture has several advantages. First, the furniture
can be easily assembled and disassembled repeatedly without ex-
cessive wear on its parts. Second, external fixtures such as fasten-
ers (e.g., screws) and bearings (e.g., hinges) are not required, thus
keeping the intended aesthetics of the design. In addition, since the
global interlocking scheme limits the parts removal and restricts the
assembly and disassembly order, component parts can tightly inter-
lock with one another, thus facilitating the stability and strength of
the furniture [Laurajaxs 2014; Jones 2014].

Given a 3D furniture design, the goal of this work is

To plan and construct a network of joints in the design
of interlocking furniture, so that the component parts in
the furniture assembly can tightly interlock with one an-
other in a global interlocking manner.

The input of our computational method is a furniture design con-
sisting of just a set of simple 3D parts (e.g., rectangular boxes),
whereas the output is the modified 3D parts (see Figure 1) with ap-
propriate joint geometry that interlocks the component parts.

Figure 2: Examples of four common joints: English dovetail,
French dovetail, halved joints, and mortise and tenon (left to right).

Figure 3: Overview of our approach. Given a furniture model, we first identify overlapping cycles in its parts-graph. Then, we iteratively
construct local interlocking groups (LIGs), i.e., G1, G2, and G3, with order dependency over the parts-graph by sharing certain parts (in
particular a key) between adjacent LIGs. Assuming each LIG is interlocked, we can achieve global interlocking over the entire assembly.

Given a furniture model, it is not straightforward to design a net-
work of joints, or a network of connectors, to form a globally-
interlocking assembly. State-of-the-art methods for interlocking
puzzles [Xin et al. 2011; Song et al. 2012] perform well for solid
compact shapes, but they cannot be used effectively for general fur-
niture models, which are typically frame structures with elongated
and planar parts. Designing the network of joints requires a global
analysis over the component parts. Independently considering lo-
cal joints is insufficient to achieve global interlocking, and this will
involve a huge number of joint combinations that require an enor-
mous effort to explore and guarantee global interlocking.

To achieve our goal, we develop a novel computational solution
with the following key ideas. First, we formulate a formal model to
define global interlocking. It is a group-based interlocking scheme
backed up by a mathematical proof. Using this model, we can con-
struct an overlapping set of small interlocking groups over the fur-
niture complex, where the parts in each group are locked by a local
key, and adjacent groups are further locked with dependencies. As
a result, we can achieve global interlocking over all the parts with
only a single mobile key, and save the enormous effort of explor-
ing the immobilization of every subset of parts in the assembly. To
put this model into practice, we first analyze the connections be-
tween adjacent parts, and determine possible joint geometries that
could be deployed at each connection. We then develop an itera-
tive method to construct small interlocking groups by assigning ap-
propriate local joints, and progressively achieve global interlocking
by further creating dependency between adjacent groups. By this
means, we can create appropriate joint geometry between adjacent
parts and produce an interlocking furniture assembly.

2 Related Work

3D Fabrication. Below we mainly focus on the design and fab-
rication of furniture. In this topic, the interest of the computer
aided design community lies mainly on traditional engineering as-
pects that facilitate models fabrication (e.g., Gustafsson [1995] and
Smardzewski [1998]), while the interest of the computer graphics
community lies mainly on the furniture design: interactive meth-
ods [Saul et al. 2011] and computational tools [Lau et al. 2011].

Among the works, Lau et al. [2011] converted furniture models into
fabricatable parts and connectors for constructing corresponding
physical objects. Saul et al. [2011] developed a sketch-based inter-
face for designing and building chairs fabricated from sheet materi-
als. Umetani et al. [2012] proposed an interactive design framework
for exploring valid furniture shapes under geometric and physical
constraints. Schwartzburg and Pauly [2013] proposed a computa-
tional approach to generate 3D models (e.g., a chair) composed of
intersecting planar pieces. Schulz et al. [2014] presented an in-
teractive design-by-example system for fabricating objects using a
parameterized template representation. Koo et al. [2014] developed
an interactive system to create functioning works-like prototypes
based on high-level functional relationships among 3D parts.

Fabrication by Parts. A number of related works focus on par-
titioning a solid 3D shape into parts for 3D fabrication. Medellı́n
et al. [2007] subdivided a 3D shape into parts based on a regu-
lar grid. Hao et al. [2011] decomposed a large complex model
into simpler 3D parts by using curvature-based partitioning. Luo
et al. [2012] partitioned a large 3D object into smaller parts by pla-
nar cuts, and then connected the parts by male and female con-
nectors. Hildebrand et al. [2013] determined the optimal print-
ing orientation to address the directional bias issue in 3D printing.
Cignoni et al. [2014] represented an input shape as planar pieces
with slit-based fabrication and assembly. Vanek et al. [2014] im-
proved the 3D printing efficiency by converting 3D objects into
shells and breaking them into parts that can be glued together. Zhou
et al. [2014] converted a 3D object into a set of jointed parts that can
be folded into a box. Hu et al. [2014] decomposed a 2D/3D shape
into a small number of parts that are approximately pyramidal.

3D Interlocking Assembly. In this work, we focus on designing
an interlocking scheme to connect the furniture’s component parts
in a globally-interlocking fashion rather than shape (furniture) de-
composition, since the furniture is given as a collection of simple
logical parts. Below, we survey some recent computational meth-
ods on interlocking. The pioneering work by Cutler [1978; 1994] is
based on exhaustive search to discover new six-piece interlocking
burr structures; it took around two and a half years to complete the
entire analysis. Instead of exhaustive search, some puzzle design-
ers employed software such as BurrTools [Röver 2011] to assist the
manual design process, i.e., using the software to test if their de-
signs are interlocked and can be assembled. The local mobility of
parts can be analyzed by blocking analysis [Li et al. 2008].

There are only a few computational methods that can construct 3D
interlocking structures. Xin et al. [2011] created interlocking puz-
zles from 3D models by replicating and connecting a specific six-
piece burr configuration, but since the method requires a central
bulky structure to achieve interlocking, it is highly restrictive, and
cannot deal with complex shapes of general topology. Later, Song
et al. [2012] developed a recursive method to construct 3D inter-
locking structures by iteratively extracting polycube-shaped puzzle
pieces from a general voxelized 3D shape.

The above works assume a solid compact 3D shape as input, so the
internal volume of the shape is used to create the blocking geom-
etry for achieving the interlocking. Hence, these methods cannot
be applied to furniture since furniture models are typically frame
structures with elongated and planar parts. Designing interlocking
furniture is a more challenging task since the designed furniture
should be interlocking, stable, and aesthetic for daily use, thereby
involving more constraints on the design and creation.

Fabricating Self-Supporting Structures. An interlocking furni-
ture is a self-supporting structure, since like other self-supporting
structures, it holds together by itself without external support. A
general self-supporting structure is composed of parts or blocks like
bricks, stones, and rods. Vouga et al. [2012] proposed to interac-

Figure 4: We iteratively assign joints between adjacent parts, e.g., group G1 in Figure 3, such that each joint immobilizes all directions of
associated parts, except for one certain direction, e.g., joint J14 immobilizes P1 and P4 except +y and -y, respectively. The number of ON
bits (in each six-bit mobility code) associated with the parts are reduced incrementally, indicating the parts interlocking in the assembly.

tively design self-supporting structures by using the thrust network
method. Panozzo et al. [2013] generated self-supporting masonry
models from a user-provided height field. Liu et al. [2013] repre-
sented a 3D self-supporting surface using a 2D regular triangula-
tion for improving its geometry processing. De Goes et al. [2013]
introduced a discrete theory of equilibrium for simplicial masonry
structures to facilitate their analysis and design. Song and Fu et
al. [2013] proposed an interactive method for designing large recip-
rocal frame structures with many sloping rods. Tang et al. [2014]
solved geometric and structural form-finding with self-supporting
polyhedral meshes for architectural and industrial design. Deuss et
al. [2014] constructed freeform self-supporting structures by using
a sparse set of chains connected to fixed anchor points.

The design of all these self-supporting structures, just like inter-
locking furniture, requires a global analysis of all the components
(i.e., blocks and parts). It should be stressed that blocks in self-
supporting structures are connected by friction or mortar, while
parts in interlocking furniture are connected by blocking using
their own geometries in the joints. Furthermore, assembling self-
supporting structures requires a dense formwork or chains, which
are difficult and tedious to construct, while assembling interlocking
furniture can be done easily with far less manual effort.

3 Overview

The input furniture design is given as a set of simple 3D parts,
where adjacent parts may contact or intersect, see Figure 3 (left).
To prepare such an input, we look for furniture designs by Google
image search and use 3D Studio Max to arrange furniture parts with
intersecting rectangular boxes to mimic a given furniture design.

The computational interlocking method that we present considers
a simplified problem, where the parts potentially connect and only
move along the main axes. Thus, each part is associated with a code
of six bits, representing the six main axial directions, where an ON
bit indicates that the part is free to move along the associated ax-
ial direction, and an OFF bit indicates that the part is immobilized
along the associated axial direction. Initially, all parts of the assem-
bly are associated with a 111111 code. Our algorithm iteratively
assigns a joint between adjacent parts. Each joint immobilizes cer-
tain directions, so that all parts, except for a specific key, eventually
possess a 000000 code, implying that they are immobilized in the
assembly. Figure 4 illustrates this procedure on a group of parts,
and shows how the assignment of joints incrementally reduces the
number of ON bits associated with the parts of the assembly. Later
on, we shall elaborate on this algorithm and formalize it.

A parts-graph is an undirected graph, where nodes represent furni-
ture parts and edges connect two contacting/intersecting parts (see
Figure 3 (left)). Given an initial parts-graph, we merge degree-1
nodes in the graph with their adjacent parts since these dangling
nodes cannot be interlocked. We also analyze and identify groups
of overlapping cycles in the parts-graph (see again Figure 3).

A local interlocking group (in short, LIG) is a connected subgraph
in parts-graph, where parts are locked by a specific key in the group.

That is, after we assemble the parts in a LIG (in the absence of other
parts in the assembly), we cannot take out any part or any subset of
parts from the LIG, unless we first take out the key, which is the
only mobile part in the LIG. Thus, LIGs should include a cycle of
at least three parts, so that the parts in a LIG can be interlocked.

A joint-graph is an undirected graph with joints as nodes and parts
as edges (see Figure 4 (right)). In the joint-graph, the direction
next to a node (joint) indicates the free axial direction that a joint
imposes on the part. Since we consider joints that restrict parts to
move along a specific axial direction, adjacent parts at a joint are
restricted to move in opposite directions, e.g., +y and −y for P1

and P4, respectively, at joint J14 shown in the figure. Moreover,
adjacent joints connected along an edge in the joint-graph should
have different axial directions in order to immobilize the associated
part (except the key), e.g., P2 in Figure 4 (right): −y and −x.

The Formal Model. We formulate the problem of computing an
interlocking furniture as a problem of (i) forming LIGs that overlap
one another over the parts-graph, and (ii) creating order dependency
to lock adjacent LIGs (see Figure 3).

Our objective is to achieve a global interlocking state, where all
parts and all subsets of connected parts (except the key itself) in
the assembly are immobilized. This requires a global analysis to
ensure that (i) every furniture part is locked by a local key in its
own LIG(s), and (ii) every LIG is locked by some other adjacent
LIG(s), except for the primary LIG (denoted by G1). Hence, G1

holds the primary key k1 that locks the entire assembly.

An LIG-graph is a directed acyclic graph (denoted by G) with LIGs
as nodes (see Figure 3). Given Gi and Gj as two adjacent LIGs,
there is a directed edge from Gj to Gi in G, if Gj depends on (and
is locked by) Gi. That is, no part in Gj can be taken out before cer-
tain part(s) in Gi (in particular, Gi’s key) has/have been taken out.
In practice, such a dependency is created by overlapping adjacent
LIGs with certain common parts (see Section 4 for detail). Except
for G1, every node in G should have at least one outgoing edge.
Moreover, G should not have cycles, or cyclic dependency.

A Three-level Scheme. The formal model is a three-level global
interlocking scheme: parts, LIGs, and the entire assembly. Based
on it, we can progressively assemble the furniture based on the
dependency order in G: starting from the LIGs without incoming
edges till reaching G1 and then ending with the primary key k1.

To approach the problem, we could ignore the middle level, and
directly compute global interlocking with parts. However, directly
computing interlocking is highly nontrivial since for n parts, we
have to consider 2n combinations (subsets) of parts, and ensure
their immobilization (except the key itself) in the assembly, e.g.,
subsets {P1,P2} and {P3,P4} in Figure 4. Note that if we can par-
tition the parts-graph into two subgraphs, such that all edges across
the two subgraphs (i.e., joints between parts across the two parti-
tions) share the same axial direction, the associated parts in a sub-
graph can be taken out altogether to break the assembly. Moreover,
we have to explore many different choices of joints for blocking
each part in the assembly. This would result in an overly large num-

ber of possible joints configurations and interlocking computation
for each configuration. Hence, directly working with parts involves
a huge search space, and is highly non-scalable.

Our three-level formal model overcomes the above issues by form-
ing and connecting small LIGs with order dependency (see Fig-
ure 3). We can, therefore, moderate the search space in computing
the interlocking locally in each LIG. Unlike the parts-graph, whose
edges are undirected connections, we cannot arbitrarily break G
since its edges are constrained to the assembly/disassembly order
between adjacent LIGs. In other words, the order dependency
avoids the need to consider the mobility of all LIG subsets, and
the exploration of subset (of parts) immobilization. Please refer to
Appendix for the related mathematical proof.

High-level Algorithm. Our computational solution has three ma-
jor steps: (i) we construct a parts-graph to represent the input furni-
ture, and then analyze and identify possible free axial directions be-
tween every pair of adjacent parts (see Section 5); (ii) we iteratively
construct LIGs with appropriate joints to achieve local interlocking
and order dependency among the overlapping LIGs, starting from
the primary key to the entire parts-graph (see Section 6); and (iii)
we generate the 3D model of each part by adapting the chosen joint
geometry to modify the part (see Section 6).

4 Formal Model

This section details our formal model and the various conditions for
achieving global interlocking. In Section 6, we present the proce-
dure that plans and assigns joints in a given furniture complex based
on these conditions. Let us start with the following notations:

• Gi is the ith LIG that we construct over a parts-graph; it has a
local key ki and a set of parts Si, for i ∈ {1, 2, ..., n}, where
n is the total number of LIGs (nodes) in G.

• S is the set of all the parts in G, i.e., S = ∪n
i=1Si, and Ri is the

(residual) set of parts from Si to Sn, so R1 = S and Rn = Sn.

• S̀i and Śi are the subsets of parts in Si that share with pre-
ceding and succeeding LIGs, respectively, i.e., S̀i = Si ∩
(∪i−1

j=1Sj) and Śi = Si ∩ Ri+1. So, S̀1 = ∅ and Śn = ∅.

• Ṡi = Si\(S̀i ∪ Śi) are parts in Gi, not shared with other LIGs.

• Given two adjacent parts PA and PB connected by a joint (see
Figure 9 for examples), we denote d(PA,PB) as the free axial
direction of PA imposed by its joint connection with PB, so
d(PA,PB) = -d(PB,PA), since PA and PB move in opposite
directions in order to separate from each other.

4.1 Conditions for Local Interlocking
To achieve local interlocking, each LIG should include a cycle of
parts. In this subsection, we present conditions for a cycle of parts
to be local interlocking with k as its key (see below). Here we focus
on 3- and 4-part cycles since they dominate in common furniture.
Note that we may still formulate conditions for cycles with five or
more parts, but in practice, these cycles are rare in common furni-
ture and they may be decomposed into cycles with fewer parts.

Case i: a 3-part cycle (see Figure 5 (left)):
• d(k,PA) = d(k,PB), so k is mobile in the assembly.

Figure 5: Groups (cycles) with 3 parts (left) and 4 parts (right).

• Every non-key part (i.e., PA and PB) should be immobilized.
Hence, d(PA,PB) 6= d(PA, k) to immobilize PA, so that
PA cannot be separated from {PB, k} in the 3-part assembly.
Similarly, d(PB,PA) 6= d(PB, k) to immobilize PB.

Case ii: a 4-part cycle (see Figure 5 (right)):
• Again, d(k,PA) = d(k,PC), so k is mobile in the assembly.

• Every non-key part should be immobilized: For PA,
d(PA, k) 6= d(PA,PB); for PB, d(PB,PA) 6= d(PB,PC);
and for PC, d(PC,PB) 6= d(PC, k).

• Every subset of two adjacent parts should be immobilized. We
immobilize {k, PA} by d(k,PC) 6=d(PA,PB), so k and PA

cannot be separated together from the assembly. Similarly,
d(k,PA) 6=d(PC,PB) for {k, PC}. Due to the subset com-
plement1, we do not need to check {PB,PC} and {PA,PB}.

For 4-part groups, we do not need to consider triplets since triplets
are complements of a single part in the assembly (similarly, two-
part subsets in 3-part groups). Moreover, we do not consider sub-
sets of non-adjacent parts, e.g., {PA, PC}, since these subsets are
immobilized by their (immobilized) individual parts.

4.2 Expanding a LIG

We discover a rule for expanding an existing LIG: given a LIG Gi

and a part P′ /∈ Si of Gi, S′i = Si∪{P′} is also a LIG if the following
conditions are fulfilled in the assembly of S′i: i) P′ is immobilized
in all directions by some parts in Si; ii) {P′, ki} is also immobilized
in Si, meaning that P′ and ki cannot be taken out together from the
assembly of S′i; and iii) ki is still mobile in Si.

By this rule, after we construct a LIG, we may add a new part to
expand the LIG without intensive interlocking computation that in-
volves all the parts of the LIG. Note that this rule can be proved by
considering three disjoint groups of subsets of Si

′: i) subsets of Si
′

without P′; ii) {P′} and {P′, ki}; and iii) {P′} ∪ X, where X is
any nonempty subset of Si, excluding {ki} and Si\{ki}.

4.3 Conditions in LIG Construction

Next, we formulate the conditions in our formal model for con-
structing LIGs with dependency in assembly/disassembly order.
The formulation is nontrivial since we have to guarantee local in-
terlocking within each LIG, global interlocking over all the parts in
the assembly, as well as assemblability, meaning that the structure
can be assembled part by part (see Appendix for the proof). Below,
we present the conditions in three cases:

Case i: Construct G1. The first one is a basic case: since G1 is
the first LIG being constructed, it does not depend on others.

• Local Interlocking: G1 is local interlocking with key k1.

• Avoid Mutual Dependency: k1 should not be shared with
any subsequent LIG, i.e., k1 /∈ Ś1, to avoid mutual depen-
dency or cycles in G.

• Assemblability2: First, we should be able to take out k1 from
the full assembly. Second, we should be able to subsequently
take out from the assembly all the parts in “S1\{k1}” that are
not in R2, so the remaining parts are just R2.

1If a subset of parts is immobilized (cannot move together to separate
from the remaining parts) in an assembly, its complement in the assembly
is also immobilized (cannot move together in the opposite direction).

2Note that if we are able to disassemble the entire assembled structure
part by part started from k1, we should also be able to assemble the same
structure part by part until putting in k1, as the last assembly step. Hence,
we explore assemblability by looking at the parts disassembly sequence.

Figure 6: Left: There is no dependency (locking) between Gi and
Gj if they share only a key; we may separate Gi altogether from
Gj\{kj}. Right: we propose to share a key and at least one non-
key part P∗, so that one of the groups (Gi) can lock the other (Gj).

See Figure 3 for an example G1, whose key is not shared with other
LIGs to avoid mutual dependency; see the joints configuration in
Figure 4, G1 is local interlocking while it can be assembled.

Case ii: Construct Gj that shares parts with only one
previously-constructed LIG, say Gi (j>i), but not others. Be-
sides the first two conditions in case i, we have the following con-
ditions for constructing Gj; in particular, Gj should depend on Gi:

• New Part(s): At least one part in Gj is not included in any
previously-constructed LIGs, i.e., |Sj| > |S̀j|, so that we can
construct LIGs that eventually cover all the parts.

• Assemblability: Before we unlock (take out local key kj) and
disassemble Gj, we should have unlocked all the LIGs that are
constructed before Gj and taken out from the entire assembly
all the parts that are not in Rj. Now, similar to case i, we en-
sure that kj can be taken out from Rj, subsequently followed
by all the parts (taken out one by one) in “Sj\{kj}” that are
not in Rj+1, so the remaining parts are just Rj+1.

• Dependency on Gi: Gj should share at least two parts (in-
cluding kj) with Gi, so that every subset of parts in Gj be-
comes immobilized until we unlock Gi by taking out ki.

Take an assembly of two LIGs (Gi and Gj) as an example. If they
share only one part, which is kj, parts in Gi may move altogether
with kj and separate from Gj even though we have not unlocked Gi

by taking out its key (see Figure 6 (left)). By sharing an additional
non-key part between them (see P∗ in Figure 6 (right)), we cannot
separate Gi from Gj since {kj, P∗} is an immobilized subset in Gj,
which is a LIG. Moreover, ki should not be shared with Gj to avoid
mutual dependency (see the second condition in case i).

Case iii: Construct Gj that shares parts with multiple
previously-constructed LIGs. This case is the same as case ii,
except for the following condition:

• Dependency. Gj should depend on at least one previously-
constructed LIG by sharing its local key kj and at least one
non-key part of it with a previously-constructed LIG.

Note that Gj may depend on more than one previously-constructed
LIG by sharing its key and a non-key part as above; here we may
share different non-key parts of Gj with these previous LIGs.

Assembly/Disassembly order. By constructing LIGs based on
the formal model, the parts disassembly order naturally follows the
LIG construction order: after taking out k1 from the full assembly,
we can take out parts in S1\R2, k2, parts in S2\R3, etc., until Sn.
Reversing this gives the parts assembly order, see Figure 3 (right).

5 Joint Analysis

To apply the formal model to create an interlocking furniture as-
sembly given a furniture design, we first need to analyze the part
connections in the design to find out possible joint geometries (each
with a free axial direction) that can be deployed at each connection
(Section 5) before we proceed to construct LIGs (Section 6).

Figure 7: The 13 cases of ICO vector (A), in which 2D boxes A
(yellow) and B (blue) intersect; ordered by +x, −z, −x, and +z.

Figure 8: The 23 cases of ICO vector (A), in which 3D boxes A
(yellow) and B (blue) intersect: ordered by +x, −z, −x, +z, +y,
and −y. The arrows show the possible axial movement directions
of A over all joint geometries that we may choose to use.

Figure 9: Example joint geometries for some cases in Figure 8.

5.1 Joint Lookup Table

To support efficient joint analysis, we prepare a precomputed table
called the joint lookup table, which is indexed by the ICO vector:

ICO (Inside-Common-Outside) Vector. Given two axis-aligned
boxes A and B with intersection volume VAB , their ICO vectors
have six elements, corresponding to main axial directions. Taking
the +x direction as an example with fA and fB as the +x faces of
A and B, respectively, the +x element of A’s ICO vector is: I if fA (but not fB) is on +x face of VAB ,

C if both fA and fB are on VAB , and
O if fA is not on VAB .

By repeating the above check for other faces, we can form A’s ICO
vector (see Figure 7 for cases with 2D boxes). Note that the ICO
vectors of A and B are complements of each other (see Figure 7
(right)): interchanging I and O and keeping C unchanged.

Figure 10: (a) a given furniture design; (b) in its parts-graph, P1 is the primary key (k1) and +z is P1’s removal direction (d(k1)); (c)
cycles that contain P1 in the parts-graph; (d)&(e) some candidates of G1 (red) produced from two of the cycles; the assigned axial directions
among the joints make each of these cycles into a LIG; (f) G2 (green) constructed after one of the candidate of G1; and (g) one of the global
interlocking configurations produced by our method; we iteratively construct the seven LIGs over the graph: G1 to G7 (in different colors).

Returning to 3D boxes A and B, if they intersect, there are 23
unique and valid cases of ICO vector (see Figure 8). These cases
are obtained by considering i) rotational symmetry and mirror re-
flection, and ii) ICO vector complement: if A’s ICO vector has
more O than I, we swap the role of A and B to reduce the number
of cases. For 3D boxes, cases without O are invalid since one of the
boxes is contained by the other.

On the other hand, if A and B just contact (without intersection),
we compute A’s ICO vector in the 2D space extended from the
contact surface. By the same considerations as the 3D cases, we
can obtain 13 cases (see Figure 7).

Joint Lookup Table is indexed by the 23+13 ICO vectors above.
To prepare it, we manually find out the possible joint geometries
that we may choose to use at the connection of each case (see Fig-
ure 9 for examples). These joint geometries are constructed in the
3D space within or near VAB based on common joint models: dove-
tail joint, halved joint, and mortise and tenon [Graubner 1992] (see
Figure 2). Each joint geometry restricts the connected parts to sep-
arate from each other along a certain (single) axial direction.

5.2 Candidate Joints and Free Axial Directions

Given an input furniture design, we analyze each of its connections
between adjacent parts by using the following two cases:

Case i: The two parts intersect. First, we compute the ICO vec-
tor of one of the two parts. If the vector has more O than I, we
replace it by its complement. We then apply axis-to-axis transfor-
mations (rotation and mirror reflection) to obtain 24 copies of the
vector in different 3D orientations, and match each copy against the
six-elements ICO vectors in the joint lookup table. When a match
is found, we can look up the joint geometries (with associated free
axial directions), and then transform this information to the object
space of the furniture by an inverse of the associated axis-to-axis
transformation that we applied earlier. Hence, we can determine
possible joint geometries and free axial directions for the given con-
nection. If we cannot find a match, such a connection is invalid.

Case ii: The two parts contact. Case ii is similar to case i, ex-
cept that we compute a four-elements ICO vector on the 2D contact
surface and generate eight copies of the vector in 2D.

6 Iterative Procedure to LIG Construction

After the joint analysis, we know the possible joint geometries that
can be deployed at each connection (joint) between parts. More-
over, we also know at each joint, a set of axial directions that each
part at the joint can choose to have; we denote D(A,B) as the set of
axial directions that part A can have at its joint with part B. Later
on, when we plan a joint for forming a LIG (see Figure 4), we can

select one axial direction from the joint’s associated D(A,B); such
a direction corresponds to a certain joint geometry (see again Fig-
ure 9). By this information and the formal model, the following
procedure can plan the joints with appropriate geometry and itera-
tively construct small LIGs with order dependency.

6.1 G1 Construction

Our procedure starts by forming the first LIG, which is G1. This
involves the following three steps:

Step 1) Confirm k1. Given a user-specified primary key (k1) with
an intended removal direction, say d(k1), we need to examine the
joints connected with k1, and check to see if all these joints con-
sistently allow d(k1) as the free axial direction to move k1 out
of the assembly. That is, whether d(k1) ∈ D(k1, b) for every
neighboring part b of k1. For example, for P1 in Figure 10(b):
d(k1) = +z ∈ D(P1,P2)∩D(P1,P8)∩D(P1,P3). In this way,
we can choose the corresponding geometry for each of these joints,
so that k1 can be taken out from the assembly along d(k1).

Step 2) Construct G1. We then obtain all the 3- and 4-part cycles
that contain k1 in the parts-graph. Since we have already chosen
the geometry for the joints connected with k1 in step 1, two of the
joints in each of the cycles have been fixed and we only have one
or two free joints left (depending on 3- or 4-part cycles). Taking
the top-left cycle in Figure 10(c) as an example, joints P1-P2 and
P1-P8 have been fixed, and so, we only need to decide the geome-
try of joints P2-P7 and P7-P8 to make the cycle into a LIG. Here
we have to consider the following two requirements. First, we have
to choose the free axial direction (and geometry) of the free joints
from the associated D(A,B). Second, we have to ensure the cy-
cle to be locally interlocking by the conditions formulated in Sec-
tion 4.1. See Figure 10(d) for some results. After making a cycle
into a LIG, we may apply the rule in Section 4.2 to expand the LIG.

Since there are only a few cycles that contain k1, and only a few
choices of axial directions (D(A,B)) for each free joint in a cycle,
we exhaustively find out all joint combinations that make each cy-
cle to be a LIG. Hence, the output of this step is a set of LIGs as
candidates of G1 (see Figure 10(d)&(e) for examples).

Step 3) Verify Assemblability. Lastly, we test the assemblability
of each candidate G1 and prune away the candidates whose k1 is
blocked to be removed from the assembly. This is done by checking
k1’s trajectory along d(k1) against other parts in the furniture. Note
that we also consider and check secondary translational movement
along axial directions perpendicular to d(k1), after k1 is stopped by
some parts in its primary movement along d(k1). After k1, we also
test other parts in the candidate LIG to ensure the fulfillment of the
assemblability condition (see case i of Section 4.3).

Figure 11: Interlocking furniture assemblies we produced (from left to right): BOOKSHELF, BABY BED, SHOE RACK, BENCH, BEDSTAND,
CONSOLE TABLE, SOFA, CHAIR, CHILD BED, and MULTI-FUNCTION TABLE. Please refer to supp. video for their assembly animations.

6.2 Construction of Subsequent LIGs

In practice, furniture assemblies do not possess an extended number
of cycles in their individual parts-graph, even for more complicated
furniture models, e.g., CHILD BED shown in Figure 11. Hence,
by the formal model, we may exhaust every possible joint configu-
ration that makes the furniture assembly to be global interlocking.
By our method, the generation of each configuration is linear to
the number of joints, and the computation load is not high, as evi-
denced by the timing statistics presented in Section 7. In detail, for
each candidate G1, we perform the following steps to iteratively
produce subsequent LIGs based on the formal model and generate
global interlocking joint configurations:

Step 1) Identify cycles and local keys. To construct G2 (or in gen-
eral Gi+1 for i≥1), we find all 3- and 4-part cycles that share at
least two parts with one of the groups we constructed previously, as
well as contain at least one new part not in any previous group. This
is to fulfill the dependency and new part(s) conditions for cases ii
and iii in Section 4.3. Moreover, these cycles should not include
local keys from any previous group to avoid mutual dependency.

For each cycle, we check each shared part to see if it can serve as a
local key by examining its connecting joints. This is similar to step
1 when constructing G1, but we test only the joints between parts
in Ri+1 since parts not in Ri+1 should have been removed when we
were about to disassemble the parts in Gi+1 (based on the formal
model); note also that some joints of the candidate key should have
been fixed by the cycles of previous groups.

Step 2) Construct next LIG. For each shared part that can serve as
a key in each cycle, we identify free joints in the cycle, plan each
free joint, etc., by the procedure as in step 2 of G1 construction.
By then, we can produce a new LIG with order dependency, see
Figure 10(f) for an example: G2 (green) depends on G1 (red).

Step 3) Assemblability. Similar to step 3 in G1 construction, we
verify the assemblability of each configuration, e.g., the one in Fig-
ure 10(f). However, when we examine successive groups after G1,
say Gi, we only need to explore parts in Gi and Ri+1, see the as-
semblability condition in case ii of Section 4.3.

After constructing G2, we iterate the above steps to construct more
LIGs until they cover all the furniture parts, see LIGs of different
colors in Figure 10(g). Note that when we exhaust the choices of
cycles and local keys, some branches we explore may fail to com-
plete since we may not be able to find an appropriate cycle, a local
key, or an interlocking joint configuration for every candidate cycle.

Post-processing. Some joints in a resulting configuration may not
be included in any constructed group, see P1-P2 and edges marked

Figure 12: Joint pattern (left) revealed on furniture exterior. Weak
joint geometry with mortise and tenon (middle) and dovetail (right).

with a circle in Figure 10(g) for examples. To complete the joint
network, we assign a joint geometry to each of these free joints by
examining the parts disassembly order and selecting an appropriate
joint based on the removal direction of associated parts at the joint.

6.3 Production of an Interlocking Furniture

After the above iterative procedure produces a large number of
global interlocking configurations, our method looks for those with
a large variation of joint types but without weak/thin joint geometry
(see Figure 12 (middle & right)), and takes them as candidates (in
practice, 20) for users to pick, e.g., users may avoid revealing joint
patterns on furniture’s exterior, especially the front, see Figure 12
(left). Moreover, we may label some parts for our method to choose
the configurations, such that the labeled parts are assembled earlier,
e.g., two of the long supporting parts in SHOE RACK, see Figure 11.

Lastly, to produce the 3D model of each part in the interlocking as-
sembly, we use the constructive solid geometry (CSG) functions in
3DS Max script to adapt the joint geometries onto their associated
parts as planned by the iterative procedure.

7 Results

Figure 11 showcases all the interlocking furniture assemblies pro-
duced by our method. Since this figure only shows static images
of completed assemblies, we present in Figure 13 the disassembly
sequence of SHOE RACK. Each snapshot image in the figure shows
one disassembly step with the associated joint(s) highlighted in a
small inset view next to the snapshot. Furthermore, we show the
assembly sequences of CHAIR and CONSOLE TABLE in Figure 15,
and snapshots of assembling CHILD BED in Figure 17. Please refer
to the supplementary video for their animations.

In addition, to help reveal the global interlocking state in the inter-
locking assemblies, we present the parts-graphs together with the
joint information (the chosen axial directions that each joint im-
poses on its associated parts) in various figures: CONSOLE TABLE

Figure 13: Snapshots showing the disassembly of SHOE RACK; see the zoom-in views for the joint geometry in each disassembly step.

Figure 14: BENCH and SOFA. The top row shows the labels of
parts, while the bottom row shows the parts-graphs with LIGs and
joint information using the same style as in Figure 10(g).

in Figure 3 (rightmost), BOOKSHELF in Figure 10(g), and BENCH
and SOFA in Figure 14. These graphs show individual local inter-
locking groups (LIGs), how they share local keys, and how they
lock with one another. Note also the parts-graph of BENCH shown
in Figure 14; it reveals how the rule in Section 4.2 helps expand a
LIG with additional parts in the assembly, e.g., G2 and G3.

Moreover, we may manually choose different parts of a furniture
model as its primary key. For example, we choose the top part
of CONSOLE TABLE (see Figure 3) as the key, but for MULTI-
FUNCTION TABLE, its key is a bottom part on the lower-left (see
Figure 1). For CONSOLE TABLE, we create another configuration
of it with a lower part as the key: P6 (see labels in Figure 3). We
fabricated this alternative design and show it in Figure 16 (top).

Statistics and Performance. We implemented our method in C++
and executed it on a desktop PC with a 3.4GHz CPU and 8GB mem-
ory. Table 1 presents the statistics of our results (see correspond-
ing models in Figure 11), including the number of parts, joints and
LIGs, the number of global interlocking (valid) configurations pro-
duced, and the total time taken to produce each resulting interlock-
ing furniture. In general, the performance depends on the number
of parts and joints, as well as the complexity of the parts-graph.

Evaluation. Given a furniture model with n joints and∼k choices
of valid joint geometry at each joint, we have ∼kn different joint
configurations in total. Among them, only a small portion of config-
urations are valid, i.e., global interlocking while can be assembled.
To evaluate our method against a baseline, we develop a simple ran-
domized method to generate a large number of joint configurations
by randomly picking valid joint geometries at each joint. By this,
we can estimate the chance and time taken to produce global inter-

Table 1: Statistics about the resulting furniture in Figure 11.

Table 2: Results: generating global interlocking (valid) configura-
tions with the randomized baseline method.

locking configurations with the randomized method and compare
it with our method. From Table 2, we can see that the randomized
method can only produce results for models with a few parts, and its
time taken increases dramatically with the number of parts. Lastly,
it is worth to note that since the randomized method tries out joint
combinations randomly, it may discover global interlocking config-
urations that our method cannot produce, since our method gener-
ates global interlocking configurations by connecting small LIGs.

3D Fabrication. We fabricate physical models of some of the
resulting interlocking assemblies, see Figure 16. These models are
created by 3D-printing individual parts of the assembly by using
the MakerBot FDM printer with the PLA plastic material. Upon the
assembly, all the parts tightly interlock with one another according
to the joints network planned by the LIG construction process.

Limitations. First, we cannot achieve global interlocking for cer-
tain furniture structures, e.g., a model with a long horizontal part
in the middle and two independent groups of parts on each end
of the long part. If parts between the two groups do not interact
(contact/intersect) with one another, we cannot achieve global in-
terlocking over the entire assembly, but can only arrange joints to
locally interlock parts in each group. Second, our method currently
considers only cycles of up to 4 parts and orthogonal connections
between neighboring parts. Third, we employ only common joint
models (e.g., see Figure 2) but not more advanced ones. Though
we can handle general three-way joints by modeling them as three
two-way joints, we cannot handle a special three-way joint situa-
tion: three orthogonal rods intersect one another within a common

Figure 15: The assembly of CHAIR (top) and CONSOLE TABLE (bottom).

Figure 16: 3D fabrication results: CONSOLE TABLE, MULTI-
FUNCTION TABLE, BEDSTAND, and CHAIR (from top to bottom).

cubical volume in the middle. In this case, we need to employ a spe-
cial joint model called the puzzle joint to interlock the three rods.
Lastly, we did not consider structural stability in the assembly, e.g.,
putting a load on the structure; we leave this as a future work.

8 Conclusion
This paper presents a computational solution to support the making
of interlocking furniture assemblies. Taking a design composed of
just simple 3D shapes, our method can automatically plan a joints
network over the furniture, so that its component parts tightly in-
terlock with one another in a global interlocking assembly. By this
approach, users can focus on the design and appearance of the fur-
niture rather than on the joints scheme and their geometry.

There are two major contributions in this work. First, we develop
a formal model to define and achieve global interlocking in a joints
network. This is a novel model, enabling us to break a furniture
complex into an overlapping set of groups: parts in each group
locally interlock with one another by a single key, and adjacent
groups are further locked with dependencies. By this three-level

model, we can save the effort of exploring the immobilization of
every subset of parts in the assembly, and localize the intensive in-
terlocking computation within each small group. Our mathemati-
cal proof shows that furniture assemblies constructed according to
this model are guaranteed to be global interlocking. Second, we
put the formal model into practice by developing a computational
method. Given a furniture design, we analyze the connections of
its parts efficiently by using the joint lookup table and ICO vectors.
We then develop an iterative method that progressively constructs
small interlocking groups with overlapping parts while considering
other factors such as local joint geometry and joint appearance. By
this method, we can construct appropriate joints over the furniture’s
component parts, and create many different global interlocking fur-
niture assemblies of assorted appearance and complexity.

In the future, we would like to support more different joint models,
and study their parameters and strength in connecting parts. More-
over, we plan to study the stability of the assembled structure based
on the choice of joints, the joint parameters, the joints network, and
the load that would be put onto the assembly. Lastly, we would like
to support non-orthogonal connections among parts and apply our
method to large-scale structures such as reciprocal frames.

Acknowledgments
We thank reviewers for the valuable comments, Michael Brown for
his voice over, Hadar Elor for proofreading, and Zhongqi Fu for the
3D printing. This work is supported in part by the Singapore MOE
Tier-2 grant (MOE2011-T2-2-041), Israel Science Foundation, and
the National Natural Science Foundation of China (61403357).

References

CIGNONI, P., PIETRONI, N., MALOMO, L., AND SCOPIGNO, R.
2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1.
Article 11.

CUTLER, W. H. 1978. The six-piece burr. Journal of Recreational
Mathematics 10, 4, 241–250.

CUTLER, W. H., 1994. A computer analysis of all 6-piece burrs.
Self published.

DE GOES, F., ALLIEZ, P., OWHADI, H., AND DESBRUN, M.
2013. On the equilibrium of simplicial masonry structures. ACM
Trans. Graph. (SIGGRAPH) 32, 4. Article 93.

DEUSS, M., PANOZZO, D., WHITING, E., LIU, Y., BLOCK, P.,
SORKINE-HORNUNG, O., AND PAULY, M. 2014. Assembling

Figure 17: Some snapshots showing the assembly of CHILD BED.

self-supporting structures. ACM Trans. Graph. (SIGGRAPH
Asia) 33, 6. Article 214.

GRAUBNER, W. 1992. Encyclo. of Wood Joints. Taunton Press.

GUSTAFSSON, S. I. 1995. Furniture design by use of the finite
element method. Holz als Roh- und Werkstoff 53, 4, 257–260.

HAO, J., FANG, L., AND WILLIAMS, R. E. 2011. An efficient
curvature-based partitioning of large-scale stl models. Rapid
Prototyping Journal 17, 2, 116–127.

HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2013. Orthog-
onal slicing for additive manufacturing. Computers & Graphics
(SMI) 37, 6, 669–675.

HU, R., LI, H., ZHANG, H., AND COHEN-OR, D. 2014. Ap-
proximate pyramidal shape decomposition. ACM Trans. Graph.
(SIGGRAPH Asia) 33, 6. Article 213.

JONES, D., 2014. Interlocking chair. http://www.offi.com/

products/offikids/PAS-CHAIR.php?p2c=679.

KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J.
2014. Creating works-like prototypes of mechanical objects.
ACM Trans. Graph. (SIGGRAPH Asia) 33, 6. Article 217.

LAU, M., OHGAWARA, A., MITANI, J., AND IGARASHI, T. 2011.
Converting 3D furniture models to fabricatable parts and connec-
tors. ACM Trans. Graph. (SIGGRAPH) 30, 4. Article 85.

LAURAJAXS, 2014. Interlocking furniture. http://laurajaxs.

hubpages.com/hub/interlocking-furniture.

LI, W., AGRAWALA, M., CURLESS, B., AND SALESIN, D.
2008. Automated generation of interactive 3D exploded view
diagrams. ACM Trans. Graph. (SIGGRAPH) 27, 3. Article 101.

LIU, Y., HAO, P., SNYDER, J., WANG, W., AND GUO, B.
2013. Computing self-supporting surfaces by regular triangu-
lation. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 92.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W.
2012. Chopper: Partitioning models into 3D-printable parts.
ACM Trans. Graph. (SIGGRAPH Asia) 31, 6. Article 129.

MEDELLÍN, H., LIM, T., CORNEY, J., RITCHIE, J. M., AND
DAVIES, J. B. C. 2007. Automatic subdivision and refinement
of large components for rapid prototyping production. Journal
of Comp. and Info. Science in Eng. 7, 3, 249–258.

PANOZZO, D., BLOCK, P., AND SORKINE-HORNUNG, O. 2013.
Designing unreinforced masonry models. ACM Trans. Graph.
(SIGGRAPH) 32, 4. Article 91.

POSTELL, J. 2012. Furniture Design. Wiley, 2nd edition.

RÖVER, A., 2011. Burr tools. burrtools.sourceforge.net.

SAUL, G., LAU, M., MITANI, J., AND IGARASHI, T. 2011.
SketchChair: An all-in-one chair design system for end users.
In TEI, 73–80.

SCHULZ, A., SHAMIR, A., LEVIN, D. I. W., SITTHI-AMORN, P.,
AND MATUSIK, W. 2014. Design and fabrication by example.
ACM Trans. Graph. (SIGGRAPH) 33, 4. Article 62.

SCHWARTZBURG, Y., AND PAULY, M. 2013. Fabrication-aware
design with intersecting planar pieces. Computer Graphics Fo-
rum (Eurographics) 32, 2, 317–326.

SMARDZEWSKI, J. 1998. Numerical analysis of furniture con-
structions. Wood Science and Technology 32, 4, 273–286.

SONG, P., FU, C.-W., AND COHEN-OR, D. 2012. Recursive
interlocking puzzles. ACM Trans. Graph. (SIGGRAPH Asia) 31,
6. Article 128.

SONG∗ , P., FU∗ , C.-W., GOSWAMI, P., ZHENG, J., MITRA,
N. J., AND COHEN-OR, D. 2013. Reciprocal frame structures
made easy. ACM Trans. Graph. (SIGGRAPH) 32, 4. Article 94.
(∗ joint first authors).

TANG, C., SUN, X., GOMES, A., WALLNER, J., AND
POTTMANN, H. 2014. Form-finding with polyhedral meshes
made simple. ACM Trans. Graph. (SIGGRAPH) 33, 4. Article
70.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. (SIGGRAPH) 31, 4. Article 86.

VANEK, J., GALICIA, J. A. G., BENES, B., MĚCH, R., CARR,
N., STAVA, O., AND MILLER, G. S. 2014. PackMerger: A
3D print volume optimizer. Computer Graphics Forum 33, 6,
322–332.

VOUGA, E., HÖBINGER, M., WALLNER, J., AND POTTMANN, H.
2012. Design of self-supporting surfaces. ACM Trans. Graph.
(SIGGRAPH) 31, 4, Article 87.

XIN, S.-Q., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y., AND
COHEN-OR, D. 2011. Making burr puzzles from 3D models.
ACM Trans. Graph. (SIGGRAPH) 30, 4. Article 97.

ZHOU, Y., SUEDA, S., MATUSIK, W., AND SHAMIR, A. 2014.
Boxelization: Folding 3D objects into boxes. ACM Trans.
Graph. (SIGGRAPH) 33, 4. Article 71.

http://www.offi.com/products/offikids/PAS-CHAIR.php?p2c=679
http://www.offi.com/products/offikids/PAS-CHAIR.php?p2c=679
http://laurajaxs.hubpages.com/hub/interlocking-furniture
http://laurajaxs.hubpages.com/hub/interlocking-furniture
burrtools.sourceforge.net

Appendix

Proof: The Formal Model

In this subsection, we show that assemblies constructed based on
the formal model presented in Sections 3 and 4 are i) global inter-
locking, i.e., all parts and all subsets of parts are immobilized except
the key, and ii) can be assembled (assemblability).

Proof: Global Interlocking. We prove this condition by mathe-
matical induction with the following proposition Q(n):

Given an assembly of n LIGs constructed according to
the conditions in the formal model (particularly in Sec-
tion 4.3), all subsets of parts in the assembly are immo-
bilized except k1 (equivalently, S\{k1}).

First, when n=1, the assembly has only one LIG, so the LIG’s local
interlocking property fulfills the proposition. So, Q(1) is true.

Then, we assume that Q(m) is true for some positive integer m.
Hence, assemblies with m LIGs constructed according to the for-
mal model are global interlocking with all subsets of parts being
immobilized except k1 (equivalently, S\{k1} due to complement).

When n=m+1, we have an assembly of m+1 LIGs (G1, G2, ...,
Gm, and Gm+1) constructed based on the formal model. Next, we
need to show that all subsets in S = S1∪...∪Sm+1 are immobilized,
except k1 (equivalently, S\{k1}). Since the last LIG Gm+1 can
only be constructed by either case ii or case iii in Section 4.3, we
have to show that Q(m+1) is true for these two cases.

(i) Gm+1 shares parts with one previously-constructed LIG only.
Without loss of generality, we take Gm as such a group. See
notations in Section 4: we denote SA = S\Sm+1 as the set of
parts in “G1, G2, ..., Gm” not shared with Gm+1; SB = S̀m+1

as the set of parts shared between Gm and Gm+1 (including
km+1); and SC = Ṡm+1 as the set of parts in Gm+1 only.

To show that S is global interlocking, we first need to show
that the primary key k1 remains mobile. This is achieved by
the assemblability condition in case i of Section 4.3.

Next, to show that all subsets of parts in S = SA∪SB∪SC are
immobilized, except k1 and S\{k1}, we divide the subsets
into the following non-overlapping categories:

Category 1: Subsets of SA∪SB, excluding k1. These subsets
of parts are from the assembly of “G1, G2, ..., Gm.” Since
such an assembly has m LIGs, only k1 and SA∪SB\{k1} are
mobile in this assembly by the assumption that Q(m) is true.
Since G1, G2, ..., Gm is a sub-assembly of S, the immobiliza-
tion of these subsets remains in S.

Furthermore, we can show that SA∪SB\{k1} is immobilized
in S because in the presence of SC in S, SB, which consists
of km+1 and at least one non-key part of Gm+1, cannot be
separated from SC since Gm+1 is a LIG. Hence, all subsets of
SA∪SB are immobilized in S, except k1.

Category 2: Subsets of SC. Since Gm+1 is a LIG,
all subsets of Sm+1 are immobilized, except km+1 and
Sm+1\{km+1}. Since subsets of SC are in Sm+1 without
km+1 and Sm+1\{km+1}, all subsets of SC are immobilized.

The subsets remaining after categories 1 and 2 are those with
a nonempty portion of SA∪SB and a nonempty portion of SC.
We further divide these subsets into categories 3 to 5.

Category 3: Subsets without SB, with a nonempty portion of
SA, and with a nonempty portion of SC. Without SB, the
nonempty portions of SA and SC are not adjacent to each
other in S, so subsets in category 3 can only be mobile if
both portions are mobile simultaneously. However, since the
nonempty portion of SC are simply subsets in category 2, such
a portion is always immobilized (by the same argument in cat-
egory 2), and so are the subsets in category 3.

Category 4: Subsets with SB, a nonempty portion of SA, and
a nonempty non-full portion of SC. SB ∪ a nonempty non-
full portion of SC is simply a subset of Sm+1 (6= {km+1}).
Since Sm+1 is a LIG, these subsets are all immobilized to be
separated from the remaining parts of Sm+1, so they together
with a nonempty portion of SA are still immobilized in S.

Category 5: Subsets with SB∪SC (Sm+1) and a nonempty
portion of SA, excluding S\{k1}. Let ŜA be a nonempty por-
tion of SA: ŜA cannot be SA, otherwise the resulting subset
is SA∪Sm+1, i.e., whole assembly. Moreover, ŜA cannot be
SA\{k1}, otherwise the resulting subset is S\{k1}. Since
the complement of category-5 subsets in S is S\(ŜA∪Sm+1)
= SA\ŜA, which must be nonempty and not equal to {k1}.
Such a complement is a subset belonging to those immobi-
lized subsets in category 1. Due to the fact that if a subset of
parts is immobilized, its complement in S is also immobilized.
Hence, category-5 subsets are all immobilized in S.

Summary: Since the above five categories cover all subsets of
S=SA∪SB∪SC (excluding k1 and S\{k1}), we conclude that
all subsets of parts (except k1 and S\{k1}) in the assembly of
the m+1 LIGs (S) are immobilized. So, Q(m+1) is true.

(ii) Gm+1 shares parts with more than one previously-constructed
LIGs. This case is similar to case (i), except that SB contains
parts of Gm+1 shared with multiple previous groups (includ-
ing km+1 and at least one non-key part of Gm+1). If we go
through the five categories above with such SB, we can still
find that the same arguments apply, so subsets of categories 1
to 5 in this case are all immobilized, except k1 and S\{k1}.

For both cases above, Q(m+1) is true if Q(m) is true. Hence,
by the principle of mathematical induction, Q(n) is true for any
positive integer n.

Proof: Assemblability. We show that this condition can be
achieved by the two assemblability conditions in Section 4.3.

By the assemblability condition in case i of Section 4.3, when we
construct G1, we have ensured that k1 can be taken out from the
full assembly, and after that, we can subsequently take out all parts
in “S1\{k1}” that are not in R2, so the remaining parts are R2.

By the assemblability condition in case ii of Section 4.3 (note: this
condition applies to both cases ii and iii of Section 4.3), when we
construct Gi (2≤i≤n), we have ensured that given Ri as the re-
maining parts, we can take out ki and then all parts in “Si\{ki}”
that are not in Ri+1, so the remaining parts are Ri+1. Hence, we
can remove parts in G2 until R3 remains, remove parts in G3 until
R4 remains, etc., until we reach and disassemble Gn.

Therefore, we can always disassemble the entire structure part by
part. In other words, we can also assemble the same structure part
by part from Gn using a reversed parts order. As a result, we can
show that our formal model guarantees assemblability.

