
Hand-Posture-Augmented Multitouch Interactions for Exploratory Visualization

Peng Song1∗ Xiaoqi Yan2∗ Wooi Boon Goh2 Alex Qiang Chen3 Chi-Wing Fu4

1University of Science and Technology of China 2Nanyang Technological University, Singapore
3Carnegie Mellon University 4The Chinese University of Hong Kong

Figure 1: Left: left- and right-hand-posture-augmented multitouch interaction designs for complex molecule visualization. Right: exploring
the inside of a human skull by tilting and moving two fingers to simultaneously control both the orientation and location of a 3D slicing plane.

Abstract
Conventional multitouch-based visualization systems mostly use
just the touch information elicited from the touch surface to support
the visualization applications, while rich contextual and dynamic
information contained in user’s hand postures above the surface
remains untapped. This paper addresses this issue by proposing a
family of finger-and-hand gestures that can be robustly recognized
and employed over a multitouch tabletop surface. We describe
how these gestures can be recognized in real-time with the use of
depth sensing, and suggest several examples of how touch-based
information augmented with information like hand differentiation,
hand posture discrimination and finger tilt dynamics can improve
conventional exploratory visualization. We present two case studies
to show how the augmented gestures can be employed in different
exploratory visualization scenarios more effectively.

Keywords: user interaction, visualization, hand gestures

Concepts: •Human-centered computing→ Interaction design;

1 Introduction
Multitouch interaction is an effective means for data visualization
as demonstrated in many existing multitouch-based visualization
systems [Isenberg et al. 2013]. While these systems provide effective
methods for intuitive data exploration, they employ mainly the finger
contact information, i.e., the number of contact points made by a
user and the contact-point movement over the surface. This contact-
point-based interaction paradigm has inherent limitations:
• First, by restricting gestural designs only to contact informa-

tion, contextual information provided by the user above the

∗joint first authors
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Briefs, December 05-08, 2016, Macao
ISBN: 978-1-4503-4541-5/16/12
DOI: http://dx.doi.org/10.1145/3005358.3005363

touch surface is ignored in the interaction design. Such infor-
mation includes the user’s hand posture during the contact and
the nature of its above-surface dynamics.

• Second, multi-point contacts made by a single hand or per-
formed bimanually cannot be distinguished. Neither can the
left and right hands be differentiated. However, such hand
differentiation and dynamic hand posture recognition allow the
design of multitouch interactions that correlate more faithfully
to the physical metaphor of particular operations, e.g., use a
two-finger pinch to control a slicing plane, see Figure 1(right).

To resolve the above limitations, one promising approach is to em-
ploy depth sensing to acquire finger and hand postures on multitouch
surfaces, so that we can incorporate the contextual knowledge of
user’s dynamic hand postures and bimanual status to enrich the mul-
titouch interactions. Although some recent works [Jackson et al.
2012; Kratz et al. 2013] started to study hand gestures to enrich mul-
titouch interactions, they only explored one or two specific gestures
without examining how hand posture information can be used in
different visualization scenarios. Other researchers [Wilson 2010;
Dippon and Klinker 2011; Murugappan et al. 2012] proposed to
detect touches and recognize hand postures on everyday surfaces
by using a single depth camera. However, the touch fingers can be
easily occluded by the hand or other fingers, and the touch detection
accuracy is inferior as compared to off-the-shell multitouch devices.

In this work, we employ a low-cost depth camera to acquire dynamic
finger-and-hand gestures and bimanual status over a multitouch
tabletop surface in a controller-free manner. By this, we can augment
the multitouch interaction and enhance the interaction design for a
visualization system in terms of richness, efficiency, and extended
capabilities. This paper makes the following contributions:
• First, we explore and present a family of dynamic finger-and-

hand gestures that can be recognized over a multitouch tabletop
surface with a low-cost depth camera. By carefully combining
the 3D depth and 2D touch information, our hand-posture
recognition method can improve the recognition robustness
against frequent hand/finger occlusion.

• Second, we discuss and demonstrate how the dynamic finger-
and-hand gestures can be applied to improve conventional
multitouch-based visualization. In particular, we present two
case studies on exploratory visualization: interactive visual-
ization of molecular structures (Figure 1(left)) and interactive
volume data exploration (Figure 1(right)).

http://dx.doi.org/10.1145/3005358.3005363


Figure 2: Left: 3D interaction space (120x70x25 cm3) above the multitouch surface as seen from the Kinect view. Middle: hands just enter
this 3D interaction space; and we can locate the hand centers from the skeleton. Right: hands just contact the multitouch surface (blue dots).

2 Hand-Posture Knowledge Extraction
This section presents the system setup, and describes how we seg-
ment 3D points extracted from the Kinect and recognize hand pos-
tures over a multitouch tabletop surface.

2.1 System Setup and Calibration

Hardware. Figure 3 illustrates the setup. The multitouch-enabled
LCD display is a normal 55-inches TV set equipped with the PQ-
Labs G4 overlay and placed horizontally at ∼0.9m above ground,
with a Kinect sensor mounted next to it (∼0.7m above it) for acquir-
ing hand actions. Both the multitouch hardware and Kinect sensor
are connected to the same server PC.

Figure 3: Our prototype system setup.
Software. We used the PQ-Labs multitouch API to retrieve the
touch information from the multitouch hardware, and the Kinect for
Windows SDK to obtain the color, depth, and skeleton information
from the Kinect sensor.

Offline Calibration. To support real-time recognition and association
of hand postures with multitouch, we need to deduce the transforma-
tions among the following coordinate systems: (i) the 3D physical
space in Kinect view, say SK ; (ii) the 3D physical space above the
multitouch surface, say SM ; and (iii) the 2D multitouch screen-space
coordinates, say Sm.
• Between SK and SM . Similar to [Araùjo et al. 2012], we put

four small red discs at the corners of the multitouch display.
Then, we examine the Kinect color image to determine a group
of pixels for each red disc in the Kinect view, and look at each
pixel group within the Kinect depth image to compute the 3D
coordinate of each red disc in SK . By these, we can determine
the transformation between SM and SK .

• Between SM and Sm. Here we tap 20 points randomly and
evenly on the multitouch surface, and record their 2D contact
positions, and their associated fingertip coordinates obtained
from the Kinect. By using the transformation obtained from the
previous calibration step, we can map the fingertip coordinates
from SK to SM . Then, by assuming that Sm and the horizontal
XY -subspace of SM are linear, we apply a least-squares fit
on the points association, and determine the transformation
between SM and Sm.

By the deduced transformations, we can define a 3D interaction
space above the multitouch surface, see the green rectangular box in
Figure 2(left) with its corresponding XYZ axes, in the space over
the multitouch surface, i.e., SM .

2.2 Hand-Points Segmentation

Our real-time method to recognize 3D hand postures has two key
steps: i) hand-points segmentation and ii) hand-posture recognition.
The first step aims to segment out the Kinect 3D points of a hand
when it moves in the 3D interaction space:

First, we collect all Kinect 3D points inside the 3D interaction space.
Since the glass on the multitouch surface reflects IR light, it is mostly
not detected by the Kinect, but random noisy points may appear near
the surface, see Figure 2. To avoid them, we ignore points that are
too close (within 1cm proximity) to the multitouch surface. Though
this strategy also removes the valid points related to the fingertip
when it contacts the multitouch surface, we can use the multitouch
data to recover the fingertip positions.

There are two cases in segmenting out the Kinect 3D points of a
hand. In the first case, our hand just enters the 3D interaction space,
so we extract the hand joint center, say c0, in the body skeleton
from the Kinect SDK, see Figure 2(middle) for the two red dots,
which represent hand wrist and hand center. To recover a stable
hand center, we further perform the followings: i) collect Kinect
3D points within a virtual sphere (radius: 15cm) centered at c0; ii)
determine the point (among the point set) that is the farthest away
(-Y) from the user (it is usually the fingertip), say ptip; iii) find a
subset of points within a radius of 20cm from ptip, and take their
centroid as the hand center, say c1. In the second case, where our
hand moves in the 3D interaction space, we use the previous hand
center, i.e., ck (k>0), to construct the virtual sphere to collect Kinect
3D points in substep (i) above, and then follow the same procedure
to compute the next hand center.

With the above procedure, we can obtain a stable hand center subject
to changes in hand postures, e.g., one-finger to multi-finger pointing.
It is also more stable compared to that from the body skeleton (from
Kinect API) since the skeleton hand center can be easily deviated by
noise, and may shift backwards when our hand contacts the touch
surface, see Figure 2 (right).

2.3 Hand-Posture Knowledge

From the multitouch hardware, we can obtain and then map each
finger touch point from Sm to SM . From the hand segmentation, we
can know the center of each hand in SM . Hence, we can associate
each finger touch point with the user’s left/right hand by checking the
proximity. Therefore, even though the contacting finger is occluded
by the hand or other fingers in the Kinect view, we can still recon-



Table 1: Summary of finger-and-hand gestures that can be robustly
extracted, see associated tilt degree-of-freedom (DOF) and range.

struct a hand skeleton from the hand center to each finger contact.
With this, we are capable of recognizing the following categories of
hand gestures (see alongside with Table 1):
• Left and right hand discrimination. First, we can easily dis-

criminate left and right hands in the 3D interaction space by
checking the Kinect skeleton data.

• One-finger touch group. Second, we can differentiate hand
gestures with one-, two-, or multi-finger contacts on the multi-
touch surface. In the one-finger touch group, we consider only
the thumb and forefinger (see Table 1(2nd row)) because per-
forming one-finger touches with other fingers is ergonomically
uncomfortable. To differentiate between the thumb and forefin-
ger, we obtain the forearm vector from the Kinect skeleton and
calculate the vector from the hand center to the touch point in
SM . Then, we project these two vectors onto the multitouch
surface, and compute the angle in-between for differentiating
between a thumb touch and a forefinger touch.

• Two-finger touch group. For two finger touches from the
same hand, we consider only the pinch and cut gestures (see
Table 1(3rd row)) since performing others are ergonomically
uncomfortable. To differentiate between pinch and cut, we
construct a vector from the hand center to the middle of the
two touch points, project such vector and the forearm vector
onto the multitouch surface, and then compute the angle in-
between to differentiate between a cut and a pinch.

• Hand dynamic: finger joystick. Besides static hand gestures,
we can also recognize hand-gesture dynamics. Our finger
joystick design allows a contacting forefinger to dynamically
tilt about its fixed touch point on the multitouch surface to
realize a joystick controller. To achieve this, we compute the
vector from the touch point to the hand center in SM per frame,
and apply the vector’s rotation angles for 2-DOF control.

• Hand dynamic: two-finger pinch tilt. We also explored the tilt
dynamics of the two-finger pinch gesture. In detail, when the
two fingers contact the multitouch surface, we determine the
line joining the two touch points. Then, when we perform the
pinch tilt with the touch points being fixed, we can measure the
rotation of the hand center about the line, and use the rotation
angle for 1-DOF control.

3 Multitouch Interaction Design with Depth
Sensing

This section presents several interesting multitouch interactions de-
signs made possible by incorporating some of the dynamic finger-
and-hand gestures listed in Table 1.

Left and right hand discrimination. Many geographical visual-
ization systems employ standard view exploration operations like
pan, zoom, and rotate. When an appropriate view of the working
canvas has been reached, editing operations such as annotate, draw,
erase, etc., can be applied to desired elements on the canvas. Current
multitouch interaction design typically approaches this problem by
using a mode-switch button to inform the application if the subse-
quent touch gestures are for view exploration or for editing. Since
our system supports left and right hand discrimination, this feature
can be employed to increase the flexibility and efficiency of multi-
touch interaction design by associating groups of operations with
different hands. By merely remembering the assigned functional
roles of each hand (similar to table manners that dictate our fork and
knife hands), users can seamlessly transit between exploration and
editing operations without explicit mode switching, see Figure 4.

Figure 4: The ability to distinguish between hands allows one to
seamlessly pan a map with the left finger and annotate with the right
finger without any mode switching operation.

Forefinger/thumb gesture discrimination. To remove the need
for explicit mode switching when moving from one operation to
another, different hand postures of the same hand can also be mapped
to different multitouch operations. By drawing analogue to common
physical actions, certain hand-posture gestures can be naturally
mapped to certain application operations. For example, one would
write on the sand with the forefinger, but use the side of the thumb
to erase a crease. Based on such physical analogue, one can assign
the draw (annotation) operation to a single forefinger touch and an
erase operation to a thumb touch, see Figure 5.

Figure 5: Examples of augmented multitouch interactions for 1-
point touch operations. The draw (left) and erase (right) operations
have an intuitive mapping to a forefinger and a thumb-based gesture.

One-finger joystick. Interactive adjustment of parameters with
a continuous value range is a common task in many visualization
applications, e.g., fine-grain color selection, tuning thresholds, etc.
Here, the slider bar widget is often employed as a means for users
to adjust parameters. However, using such widget requires finger

Figure 6: Dynamic finger tilt about a contact point (right) is used
to adjust continuous parameters. Unlike the traditional multitouch
slider bar (left), the finger joystick design is more space friendly.



movement across the screen, and this is often constrained by the
lack of screen space in the user interface layout. The ability to vary
dynamics of hand posture about a stationary contact point like that
provided by the one-finger joystick gesture can be used to overcome
the limitations of the slider bar widget, see Figure 6(right). Since it
requires no movement on the touch surface, a GUI with dense and
space-friendly arrangement of variable inputs can be realized.

Two-finger pinch tilt. We extend the idea of dynamic hand tilt
to a two-finger touch implementation, where control of a 1-DOF
tilt operation constrained about two arbitrary points can be easily
implemented and differentiated from a 2-DOF tilt provided by a
one-finger joystick gesture. Figure 7 illustrates an application of the
two-finger pinch tilt dynamic gesture.

Figure 7: Example of how two-finger hand tilt and rotate ges-
tures can be used to interactively control a 2D slicing plane for
exploratory visualization of a 3D CT volume data.

The dynamics of the hand tilt and the movement of the finger contact
points can be combined to produce interesting multitouch interaction
designs, allowing one to instantaneous vary multiple continuously
changing parameters as shown in Figure 8. By setting appropriate
angular thresholds, we can also map a high or low hand tilt to
different multitouch operations without explicit mode switching.

Figure 8: Examples of how instantaneous hand tilt of a user can
control the changing color of a line (left) and the changing tonal
gradation between two points with varying width (right).

4 Case Studies: Visualization Applications
This section presents two case studies, showing how our proposed
finger-and-hand gestures can be employed in visualization applica-
tions (see the supplementary video for the demonstration).

4.1 Interactive Visualization of Molecular Structures

When exploring the visualization of complex molecular structures,
two basic types of exploratory operations are often required. The
first relates to the virtual camera view, including view translation,
orientation, and zoom control. We assign these multitouch opera-
tions to the user’s left hand, see Figure 1(left). The 2-DOF finger
joystick gesture allows the user to simultaneously control the zoom
direction and rate to explore the visualization quickly and precisely.

The second type relates to the manipulation of the virtual 3D model.
For our purpose, the ability to rotate the model about a specific
atom and a constrained rotation about a line joining selected atoms
are desired. The finger joystick gesture is employed in the former
case to give a 2-DOF rotation about an atom selected (touched) by
the user’s forefinger. For the latter case, a two-finger pinch gesture
allows the user to select two atoms that make up a line, about which
the 1-DOF hand tilt offers a constrained rotation, see Figure 1(left).

4.2 Interactive Volume Data Exploration
The second case study is the visualization of 3D volume data ob-
tained from CT and MRI scans. Figure 1(right) shows the internal
structure of a human skull being explored with a 2D sliced image
according to a 3D virtual slicing plane. By using our proposed
one-handed two-finger pinch gesture, we can simultaneously control
the orientation and location of the slicing plane: position from the
contact points made by the two fingers, and orientation by the tilt
angle of the gesture. As a result, we can interactively explore tiltable
2D sliced images over the 3D volume by simply using two fingers.

5 Comparative User Studies
Two comparative user studies were performed to evaluate the quan-
titative improvement when conventional multitouch interaction de-
signs are augmented with knowledge of the proposed hand gestures.
In user study 1, the finger joystick interaction design is compared to
a conventional slider bar widget to evaluate the efficiency and ease
of use when adjusting a variable parameter to a random target value.
Results indicate that performing the task with the finger joystick pro-
vides significant improvement in task completion time. In user study
2, the user’s task is to modify marked squares by applying a color
or erase operation using either conventional multitouch interaction
designs or multitouch designs augmented with the proposed gestures.
Results show that the augmented designs are more efficient and less
frustrating. The supplementary material provides more details.

6 Conclusion
This paper presents a family of dynamic finger-and-hand gestures
that can be used to enhance and enrich multitouch interaction de-
signs on tabletop surfaces for exploratory visualization. We present
two case studies to show how these gestures can be applied for ex-
ploratory visualization and two user studies to show their efficiency.
Limitation. Current setup requires extended floor-space behind the
multitouch tabletop, which can be problematic in confined situations.

Acknowledgments
This work is supported by the Singapore MOE Tier-1 Grant (RG
29/11), and the Chinese University of Hong Kong strategic recruit-
ment fund and direct grant (4055061).

References

ARAÙJO, B. R. D., CASIEZ, G., AND JORGE, J. A. 2012. Mockup
Builder: direct 3D modeling on and above the surface in a contin-
uous interaction space. In Graphics Interface, 173–180.

DIPPON, A., AND KLINKER, G. 2011. KinectTouch: Accuracy
test for a very low-cost 2.5D multitouch tracking system. In ITS,
49–52.

ISENBERG, P., ISENBERG, T., HESSELMANN, T., LEE, B., VON
ZADOW, U., AND TANG, A. 2013. Data visualization on interac-
tive surfaces: A research agenda. IEEE CGA 33, 2, 16–24.

JACKSON, B., SCHROEDER, D., AND KEEFE, D. F. 2012. Nailing
Down Multi-Touch: anchored above the surface interaction for
3D modeling and navigation. In Graphics Interface, 181–184.

KRATZ, S., CHIU, P., AND BACK, M. 2013. PointPose: Finger
pose estimation for touch input on mobile devices using a depth
sensor. In ITS, 223–230.

MURUGAPPAN, S., VINAYAK, ELMQVIST, N., AND RAMANI,
K. 2012. Extended Multitouch: Recovering touch posture and
differentiating users using a depth camera. In UIST, 487–496.

WILSON, A. D. 2010. Using a depth camera as a touch sensor. In
ITS, 69–72.


