
DESIA: A General Framework for Designing Interlocking Assemblies

ZIQI WANG, EPFL

PENG SONG, EPFL

MARK PAULY, EPFL

Fig. 1. Various interlocking assemblies designed using our framework, from left to right: voxelized puzzle, plate structure, furniture, and frame structure. Our

method supports different types of joints as highlighted in the zooms. Please refer to the accompanying video for assembly sequences and the supplementary

material for the blocking graphs defining the interlocking configurations.

Interlocking assemblies have a long history in the design of puzzles, furni-

ture, architecture, and other complex geometric structures. The key defining

property of interlocking assemblies is that all component parts are immobi-

lized by their geometric arrangement, preventing the assembly from falling

apart. Computer graphics research has recently contributed design tools that

allow creating new interlocking assemblies. However, these tools focus on

specific kinds of assemblies and explore only a limited space of interlocking

configurations, which restricts their applicability for design.

In this paper, we propose a new general framework for designing inter-

locking assemblies. The core idea is to represent part relationships with

a family of base Directional Blocking Graphs and leverage efficient graph

analysis tools to compute an interlocking arrangement of parts. This avoids

the exponential complexity of brute-force search. Our algorithm iteratively

constructs the geometry of assembly components, taking advantage of all

existing blocking relations for constructing successive parts. As a result, our

approach supports a wider range of assembly forms compared to previous

methods and provides significantly more design flexibility. We show that

our framework facilitates efficient design of complex interlocking assem-

blies, including new solutions that cannot be achieved by state of the art

approaches.

CCS Concepts: • Computing methodologies → Shape modeling; • Ap-
plied computing → Computer-aided manufacturing;

Additional Key Words and Phrases: 3D assembly, interlocking, component

parts, joints, computational design, directed graph

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART191 $15.00

https://doi.org/10.1145/3272127.3275034

ACM Reference format:
Ziqi Wang, Peng Song, and Mark Pauly. 2018. DESIA: A General Framework

for Designing Interlocking Assemblies. ACM Trans. Graph. 37, 6, Article 191
(November 2018), 14 pages.

https://doi.org/10.1145/3272127.3275034

1 INTRODUCTION

3D assemblies refer to objects that combine multiple component

parts into a structure with a specific form and/or functionality.

Connection mechanisms are usually required to prevent the parts

from moving relative to one another and make the assembly steady

for practical use. However, these connectors can be irreversible (e.g.,

glue), impair the structural integrity of parts (e.g., nails), or degrade

the external appearance of the assembly (e.g., clamps).

Rather than relying on additional explicit connectors, interlock-

ing assemblies connect parts into a steady structure based only

on the geometric arrangement of the parts. This intriguing prop-

erty facilitates repeated assembly and disassembly and significantly

simplifies the correct alignment of parts during construction. Con-

sequently, interlocking assemblies have been used in a variety of

applications, including puzzles [Stegmann 2018], furniture [Fu et al.

2015], architecture [Deepak 2012], and 3D printing [Yao et al. 2017a].

In an interlocking assembly, parts need to follow certain orders

to be assembled into the target object. Once assembled, there is only

one movable part, called the key, while all other parts as well as
any subset of parts are immobilized relative to one another [Song

et al. 2012]. However, this defining property of parts immobiliza-

tion makes designing interlocking assemblies highly challenging.

Explicitly testing the immobilization of every subset of parts re-

quires costly computations; optimizing for the geometry of parts

that satisfy these immobilization requirements, while avoiding dead-

locking, is even more complex.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275034
https://doi.org/10.1145/3272127.3275034

191:2 • Ziqi Wang, Peng Song, and Mark Pauly

Recently, several computational approaches have been developed

to address this problem [Fu et al. 2015; Song et al. 2016, 2012, 2017;

Xin et al. 2011; Yao et al. 2017a; Zhang and Balkcom 2016]. The

common idea is to directly guarantee global interlocking by con-

structing and connecting multiple local interlocking groups (LIGs),

which avoids the overhead of testing all part subsets for immobiliza-

tion. While these methods show successful results, they only focus

on specific sub-classes of interlocking assemblies, e.g., recursive

interlocking puzzles [Song et al. 2012], but do not explore the full

search space of all possible interlocking configurations. As a conse-

quence, these approaches are restricted in the kind of input shapes

they can handle and have limited flexibility to satisfy additional

design requirements besides interlocking, e.g., related to aesthetics

or functional performance.

Contributions. In this paper, we propose a new general framework

for DESigning Interlocking Assemblies, called DESIA, that avoids
the restrictions of previous LIG-based methods. Specifically, we

make the following contributions:

• We represent interlocking assemblies with a set of baseDirectional
Blocking Graphs (DBGs) and implement an efficient graph analysis

algorithm that can test for global interlocking in polynomial time

complexity.

• We introduce a general iterative framework for designing inter-

locking assemblies that can explore the full search space of all

possible interlocking configurations by utilizing all existing part

blocking relations described in the graphs.

• We demonstrate the flexibility of our framework for designing

different classes of assemblies, including new types of interlocking

forms that have not been explored in previous works.

The rest of the paper is organized as follows. We first discuss

related work in Section 2. In Section 3 we introduce our graph-based

representation for assemblies and present efficient algorithms for

testing whether an assembly is interlocking. Section 4 then describes

our computational framework for designing interlocking assemblies.

In Section 5 we show different types of assemblies generated with

our approach, compare with previous works, and highlight several

application examples. We conclude with a discussion of limitations

of our approach and some thoughts on future research problems.

2 RELATED WORK

Connecting Parts in 3D Assemblies. To create a multi-part object for

practical use, component parts need to be assembled and tightly con-

nected. For example, glue is used to connect 3D printed parts [Chen

et al. 2015; Hu et al. 2014; Vanek et al. 2014] although glued parts

cannot be separated easily, discouraging parts disassembly and re-

assembly. Nails and screws are commonly used in furniture [Lau

et al. 2011; Shao et al. 2016]. However, these fasteners may break the

parts and become loose after repeated disassembly and reassembly.

Wire also can be used for part connections [Attene 2015; Richter

and Alexa 2015], yet tying parts together could be a tedious task.

In practice, integral joints are often preferred for connecting

parts, since they greatly simplify the assembly process. For exam-

ple, woodworking joints (see Figure 2) are widely used in furniture

Fig. 2. Example woodworking joints. From left to right: mortise-and-tenon,

halved joint, and dovetail joint, where the black arrow shows the single

movable direction of the part allowed by the joint.

design [Chen and Sass 2015; Koo et al. 2017; Schwartzburg and

Pauly 2013], mortise-and-tenon joints for 3D printed object assem-

blies [Duncan et al. 2016; Hao et al. 2011; Luo et al. 2012], and halved

joints for laser-cut shape abstractions [Cignoni et al. 2014; Hilde-

brand et al. 2012; McCrae et al. 2014]. However, these joints only

constrain relative part motion locally, and the resulting assembly

typically relies on other means, e.g., friction and/or gravity, to lock

the parts in place [Yao et al. 2017b].

Self-supporting Structures, e.g., masonry buildings [Rippmann et al.

2016] and puzzles [Frick et al. 2015], are assemblies of rigid com-

ponents that do not require any binder to connect the parts. The

entire structure is in static equilibrium through gravity-induced

compression forces that immobilize all the parts [Whiting et al.

2009]. Recently, the design of freeform self-supporting structures

has received a lot of interest in computer graphics. Some research

works focus on designing 3D surfaces that only exhibit internal com-

pression forces under gravity [de Goes et al. 2013; Liu et al. 2013;

Miki et al. 2015; Tang et al. 2014; Vouga et al. 2012], while others

focus on the design, fabrication, and assembly of self-supporting

structures [Deuss et al. 2014; Panozzo et al. 2013; Rippmann et al.

2016]. Self-supporting structures can only bear compression load

but are not designed to handle any tensile force. This is reason-

able for certain architectural structures that are built to bear their

own weight, but not for general spatial assemblies that experience

forces in arbitrary directions. The strategy of immobilizing parts in

self-supporting structures is therefore not applicable in our general

assembly setting.

Interlocking Assemblies. Several computational methods have re-

cently been developed to construct interlocking assemblies. Xin et

al. [2011] create 3D interlocking puzzles by replicating and con-

necting multiple instances of a six-piece interlocking burr structure.

Rather than reusing an existing structure, Song et al. [2012] con-

struct 3D interlocking puzzles by iteratively extracting pieces from

a voxelized 3D shape and enforcing a local interlocking condition

among every three consecutive pieces. Song et al. [2015] extend

this method to handle smooth non-voxelized shapes for 3D printing.

Zhang and Balkcom [2016] define a set of voxel-like interlocking

blocks and connect instances of these blocks layer-by-layer into

various voxelized shapes.

Different from above works that take a 3D solid object as an input,

Fu et al. [2015] focus on plate structures such as furniture that have

been initially partitioned into parts. They compute an interlocking

joint configuration by planning and connecting local interlocking

groups. This method has been extended to interlock 2D laser-cut

parts into a convex polyhedron [Song et al. 2016] and to design

reconfigurable furniture with multi-key interlocking [Song et al.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

DESIA: A General Framework for Designing Interlocking Assemblies • 191:3

2017]. Yao et al. [2017a] design and optimize interlocking shell pieces

for 3D printing. They employ 3D simulation to test whether the

resulting shell assemblies are interlocking. However, this generate-

and-test paradigm is relatively inefficient and applicable only for

assemblies with a small number of interlocking pieces.

The key idea of the above works (except [Yao et al. 2017a]) is

to design interlocking assemblies by constructing and connecting

multiple local interlocking groups. This strategy skillfully avoids

the test for global interlocking of the resulting assemblies, which

would have a time complexity that is exponential in the number

of parts [Song et al. 2012]. While this strategy allows designing

interlocking assemblies with many parts, the search space is re-

stricted to a small subset of all possible interlocking configurations.

Our experimental results in Section 5 show that the flexibility of

designing interlocking assemblies can be significantly increased by

our method’s ability to explore the full search space.

Assembly Planning is the problem of finding a sequence of motions

to assemble a structure from its parts. This problem has been ex-

tensively studied in robotics and we refer to [Ghandi and Masehian

2015] for a thorough review. Assembly planning is also relevant for

computer graphics applications, e.g., for generating visual assem-

bly instructions [Agrawala et al. 2003; Guo et al. 2013] or creating

exploded view diagrams [Li et al. 2008].

Finding an assembly plan requires identifying movable parts and

part groups at each intermediate assembly state, often leading to a

combinatorial search problem. To solve this task more efficiently,

Wilson [1992] invented a Directional Blocking Graph and a Non-
Directional Blocking Graph to represent blocking relations among

parts in an assembly. Tai [2012] employed these graphs for designing

reciprocal frame structures connected with notched joints, aiming at

minimizing the number of movable parts and part groups in the final

assembly. Rather than focusing on assembly planning, our work, to

the best of our knowledge, is the first to employ these graphs for

computational design of interlocking assemblies. Specifically, we

address the challenges of 1) efficiently testing for interlocking and

2) constructing the geometry of interlocking parts.

3 MODEL INTERLOCKING ASSEMBLIES

In this section, we introduce our conceptual representation of in-

terlocking assemblies using a family of directed graphs. We show

how this graph-based representation leads to efficient algorithms

to test interlocking. In Section 4 we then explain how to effectively

employ this representation and algorithms to design interlocking

assemblies.

3.1 Graph Model

Consider an assembly A, made of N parts P1, ..., PN . We make the

following assumptions: 1) each part Pi is rigid; 2) neighboring parts

have planar surface contact only; and 3) A can be disassembled by

single-part translational motions, i.e., part rotation is not required

and all other parts remain fixed when removing a part.

Directional Blocking Graph (DBG). We denote as G(d,A) the direc-
tional blocking graph of assembly A for translation along direction

d . This directed graph has nodes representing the parts of A and

directed edges ei→j from Pi to Pj if and only if Pj prevents any

Fig. 3. Example DBGs and NDBG. (a&b) A 2D interlocking assembly and

its parts-graph, where the key P1 is movable along d2; (c&d) Two DBGs of

the assembly; and (e) NDBG of the assembly. A part with zero out-degree

or in-degree in a DBG is highlighted with a red circle.

translational motion of Pi along d . In other words, ei→j can be read

as “Pi is blocked by Pj " in direction d . See Figure 3(c&d) for two
examples.

If G(d,A) is strongly connected, i.e. if every node can be reached

from every other node, no part or part group is movable along d ;
see Figure 3(c). A part group S of A is locally free to translate in

direction d (−d), if and only if the out-degree (in-degree) of S in

G(d,A) is zero; see P1 in Figure 3(d).

Non-directional Blocking Graph (NDBG). We represent the set of all

translation directions in 2D by the unit circle denoted asC . For every
pair of parts in contact in A, we draw the diameter that is parallel

with the contact line. The drawn diameters partition C into an

arrangement of regions, for which the corresponding DBG G(d,A)
remains constant whend varies over a region. For any pair of parts in
contact (e.g., P1 and P2 in the inset), if there

are more than two contact lines, we only

retain the two diameters ofC (e.g., two con-

tact lines in blue) which bound the cone

of directions in which one part is free to

translate relative to the other. The arrange-

ment of points and intervals on C , and the associated DBGs form

the non-directional blocking graph of A; see Figure 3(e). An NDBG

of a 3D assembly can be built similarly by constructing DBGs for

each point and regular region on a unit sphere that represents all

possible translation directions in 3D; please refer to [Wilson and

Latombe 1994] for more details.

Base Directional Blocking Graphs. An NDBG represents the parts

blocking relations with redundancy in two aspects. First, the DBG

corresponding to an arc in C can be derived by performing union

operations on the DBGs associated with the two end points of the

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

191:4 • Ziqi Wang, Peng Song, and Mark Pauly

arc; see again Figure 3(e). Second, we can obtain G(−d,A) from
G(d,A) easily by reversing the direction of every edge in G(d,A)
due to the reciprocity of blocking relations among the parts.

Therefore, it is sufficient to model the blocking relations in A
by using only a set of base DBGs denoted as {G(d,A)}, which we

select as the DBGs corresponding to the end points in a half circle

of C . For example, two DBGs in Figure 3(c&d) form {G(d,A)}. We

call the set of directions corresponding to the base DBGs as base
directions, denoted as {d}. The number of base DBGs (as well as

base directions) is O(N 2) since every pair of parts provides at most

two diameters in C .

3.2 Testing Interlocking

In an interlocking assembly, every part and every part group are

immobilized for all possible translation directions, except a single

key. A part group is not immobilized if parts in the group are able

to 1) translate along the same direction; or 2) different directions

simultaneously (see Figure 4). In this subsection, we develop two

approaches for testing interlocking of 3D assemblies: a DBG-based

approach that considers only the first kind of part group movement;

and an inequality-based approach that considers both kinds of part

group movement.

DBG-based Testing Approach. To test immobilization of a part group

S, we need to compute blocking relations between S and A − S: the
part group S is immobilized if S is blocked by A − S in all transla-

tion directions. Explicitly testing interlocking by checking immo-

bilization of every part and every part group has exponential time

complexity. However, treating each part group S independently ig-

nores significant redundancies in the blocking relations across the

parts. We exploit these redundancies and propose a more efficient

approach to test interlocking. The key idea is to utilize the blocking

relations encoded in the set of base DBGs to implicitly test immobi-

lization of every part and every part group along a finite number of

translation directions, i.e., the base directions {d}.
In detail, an assembly with at least three parts is interlocking, if

all base DGBs are either

(1) strongly connected, or

(2) have only two strongly connected components one of which

has a single part that is identical across all DGBs.

Here the strongly connected component with a single part is the

key of the assembly. Direction d associated with each DBG with

two strongly connected components is the key’s (reversed) movable

direction according to the in-edge (out-edge) of the key in the DBG;

e.g., the assembly in Figure 3(a) is interlocking since its two base

DBGs in Figure 3(c&d) satisfy the above requirement.

In our implementation, we use Tarjan’s algorithm [Tarjan 1972]

to find strongly connected components in each DBG. Runtime com-

plexity is linear in the number of edges and nodes in the graph, i.e.,

O(N 2) since there are at most N 2
edges in the graph. As the set

of base DBGs has O(N 2) graphs, the worst-case complexity of our

interlocking testing algorithm is O(N 4), which is much lower than

O(2N) of the previous approach [Song et al. 2012]. In particular, the

complexity to test interlocking of a well-structured assembly, where

each part connects with at most L ≪ N parts, is O(L2N 2) since the

number of base DBGs is O(LN) and running Tarjan’s algorithm on

Fig. 4. A 2D assembly for which translating two parts along different direc-

tions (black arrows) simultaneously is the only way to disassemble it.

each DBG is also O(LN). In practice, our algorithm is extremely

fast. For example, our implementation can test for interlocking of

the 80-part Bunny assembly in Figure 12(b) in 0.5 milliseconds, in-

cluding the construction of all blocking graphs. For comparison,

the approach of [Song et al. 2012] takes 24.6 seconds on a 20-part

Bunny of the same voxel count and would run years on the 80-part

model; see also Section 5.

This DBG-based approach is sufficient for testing interlocking

of 3D assemblies where parts are orthogonally connected; see sup-

plementary material for a proof. However, it is only necessary but

not sufficient for testing interlocking of 3D assemblies with non-

orthogonal part connections. Figure 4 shows a counter example. The

DBG-based approach identifies this assembly as deadlocking yet

two parts actually can move along different directions simultane-

ously. To address this issue, we devise the following inequality-based

approach.

Inequality-based Testing Approach. Consider that each part Pi can
translate freely in 3D space and denote the velocity of Pi as vi .
During the parts movement, the constraint is to avoid collision

among the parts. We model this collision free constraint between Pi
and Pj as (vj −vi) · ni j ≥ 0, where ni j is the normal of the planar

contact interface between Pi and Pj (pointing towards Pj).
By stacking all these constraints, we get a system of linear in-

equalities

AV ≥ 0, (1)

where V = [v1, ...,vn]
T
, and A is the matrix specifying the coeffi-

cients given by the normals of all interfaces. To avoid the case that

all parts move together as a whole, we randomly select a part, say

Pr , as a reference, and fix it by setting its velocity vr = 0.

We consider the assembly as deadlocking if the system does not

have any non-zero solution. However, directly solving the system

is nontrivial due to the high dimensional search space (i.e., number

of variables larger than 3) [Solodovnikov 1979]. Instead, we address

the problem by formulating a linear program with some auxiliary

variables.

max(
∑

ti j) (2)

s.t. (vj −vi) · ni j ≥ ti j , ∀interfaces(i, j)
0 ≤ ti j ≤ 1,

vr = 0.

If the assembly is deadlocking, then all ti j should be 0; otherwise,
some ti j should be strictly larger than 0.

A 3D assembly is interlocking if it satisfies: 1) there is only one

movable part, say Pk ; and 2) the assembly is deadlocking if we

fix Pk . Hence, we first run the above linear program while setting

velocities of all the parts as zero except Pi . We iterate this simplified

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

DESIA: A General Framework for Designing Interlocking Assemblies • 191:5

Fig. 5. Overview of our framework on designing a 2D interlocking assembly. (a) Given a 5 × 5 square as input, (b-i) our framework tries to generate a 5-part

interlocking 2D assembly, in which each part should have at least two pixels. Top row: construction tree, where each node at depth i represents a candidate of
Ai . Here we show them = 3 highest ranked options at each level with the top-ranked on the left. The blue arrows indicate the procedure to visit the nodes

for generating parts. If the framework cannot find any child for the current node (in dashed circle, denoted as A∗i), it will backtrack to (c) its siblings or (f)
ancestors. Middle row: geometric examples corresponding to the dashed node in the tree. Bottom row: base DBGs of the geometric examples, where the key is

indicated by a red circle. For simplicity, we show nodes Pj (j ≤ i) as j , and Ri as R in (a-h), and show the last part R4 as P5 in the final assembly (i).

linear program for each Pi , and identify all the parts that can move

individually. We consider the assembly as non-interlocking if the

number of such parts is not one. Next, we run the above linear

program while setting velocities of the single movable part Pk and

the reference part Pr (Pr , Pk) as zero. We consider the assembly as

interlocking if the linear program cannot find any non-zero solution.

We have implemented both testing approaches and found that

the DBG-based approach is much faster than the inequality-based

approach; e.g., it takes 0.0076 and 0.1281 seconds respectively on

a 1500-part Cube assembly (see Figure 12(d)). Thus, for assemblies

with non-orthogonal part connections, it would be more efficient to

run the DBG-based test first to filter out non-interlocking assemblies,

followed by verification with the inequality-based test.

3.3 Testing Disassemblability

The DBGs were originally developed to test whether a structure can

be (dis)assembled. By successively identifying the movable part (or

part group) based on the DBGs, we can find a possible sequence to

disassemble all the parts. Otherwise, we consider the structure as

not (dis)assemblable by part translational motions.

In practice, a part P may not be able to be taken out by a single

translation, say along d , since some part may block P after it moves

along d for a certain distance; see the inset figure. Since this case is

not modeled in the DBGs, we try to find a

collision-free path for taking out P by sam-

pling P ’s position along the translation di-

rection and allowing changing P ’s transla-
tion direction at a certain point. Otherwise,

we consider P as not disassemblable. Al-

ternatively, more complex disassembly path planning approaches,

e.g. [Ghandi and Masehian 2015], could be employed here.

4 COMPUTATIONAL DESIGN FRAMEWORK

Given our efficient algorithms to test for interlocking, our main goal

is now to provide effective algorithms for designing interlocking

assemblies. We first provide a high-level overview of our framework

before presenting the conceptual and algorithmic details.

As input we expect the final shape of the assembly, from which

the component parts are either constructed from scratch as in [Song

et al. 2012, 2015; Xin et al. 2011] or explicitly initialized as in [Fu

et al. 2015; Song et al. 2016; Yao et al. 2017a]. Our computational pro-

cess for creating an interlocking assembly starts with the full input

model, then iteratively splits off successive parts for disassembly. At

each iteration, we first identify a set of suitable blocking relations to

be generated between the current assembly and the new part such

that the interlocking property is maintained. Then we search for the

part geometry that satisfies these blocking relations. The selection

of a new part is guided by a ranking function that takes into account

certain geometric properties, e.g. part size, or other requirements,

e.g. on part fabrication. The search space is then explored in a tree

traversal process that uses automatic backtracking when no inter-

locking solution could be found in a specific iteration; see Figure 5.

We also provide a user interface to interactively explore different

options for part decomposition, allowing the user to overwrite the

generic ranking function for part selection; see Figure 15.

4.1 Iterative Design Framework

Given the input shape denoted as R0, we iteratively construct the

geometry of each part (or introduce appropriate joints in the ge-

ometry of each initialized part; see Section 5.2), one by one. This

forms a sequence of constructed parts, P1, P2, ..., Pn , with Rn , the
remaining part of R0, as the last part:

[R0] → [P1,R1] → [P1, P2,R2] → ...→ [P1, ...Pn ,Rn] .

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

191:6 • Ziqi Wang, Peng Song, and Mark Pauly

Algorithm 1 Algorithm to design an interlocking assembly An
from a given shape R0.

1: function CreateInterlockAssembly(R0)

2: i ← 0

3: A∗i ← [R0]

4: while i < n do
5: if i=0 then
6: {Ai+1} ← GenerateKey(A∗i) ▷ See Subsection 4.2

7: if {Ai+1} = ∅ then
8: return NULL

9: else
10: {Ai+1} ← GenerateParts(A∗i) ▷ See Subsection 4.3

11: if {Ai+1} , ∅ then
12: RankCandidates({Ai+1}) ▷ In descending order

13: if i + 1 = n then
14: return A1

n
15: else
16: i ← i + 1

17: A∗i ← A1

i

18: else if A∗i .siblinд , NULL then
19: A∗i ← A∗i .siblinд ▷ A∗i .siblinд is the one second to

A∗i in the ranked {Ai }
20: else
21: while A∗i .parent , NULL &&

22: A∗i .parent .siblinд = NULL do
23: A∗i ← A∗i .parent
24: i ← i − 1

25: if i = 0 then ▷ Quit if backtrack to A0

26: return NULL

27: if A∗i .parent , NULL &&

28: A∗i .parent .siblinд , NULL then
29: A∗i ← A∗.parent .siblinд
30: else
31: return NULL

Here we denote each intermediate assembly [P1, ..., Pi ,Ri] as Ai
(0 ≤ i ≤ n), and its base DBGs as {G(d,Ai)}. Figure 5 shows an

example where the parts are constructed from scratch.

To guarantee that the resulting assembly An = [P1, ..., Pn ,Rn]
is interlocking and disassemblable, we have the following require-

ments when decomposing Ri−1 into Pi and Ri :

(i) Connected. The geometries of Pi and Ri should each be con-

nected, making Ai a valid assembly.

(ii) Interlocking. Ai (i ≥ 2) is interlocking with P1 as the key.

In other words, {G(d,Ai)} should satisfy the interlocking re-

quirement described in Section 3.

(iii) Disassemblable. Pi can be removed from [Pi ,Ri], so we can

disassemble Ai in the order of P1, P2, ..., Pi , Ri .

The advantage of this iterative design framework is that we achieve

the goal of global interlocking by satisfying a set of local require-

ments when constructing each pair of Pi and Ri .

Tree Traversal. Sincewe cannot guarantee that the construction of Pi
and Ri succeeds at every iteration, we propose an iterative approach

with backtracking to construct An ; see Figure 5 and Algorithm 1.

The key idea is to build and maintain a construction tree, where each

node represents a candidate of Ai . For each node, we generate a set

of children denoted as {Ai+1}, among which the only different parts

are Pi+1 and Ri+1. Our approach ranks these candidate assemblies

at each iteration to facilitate the construction of successive parts.

For example, we rank {Ai+1} according to the compactness of Ri+1

measured by using the accessibility in [Song et al. 2012], since parts

extracted from a compact Ri+1 are more likely to be connected;

compare R1 in Figure 5(c&f). In case the user has other design

goals besides interlocking, e.g., regarding the appearance of the

assembly, we support user intervention to adjust the ranking; see

again Figure 15. In case we cannot generate any valid result from

the selected candidate in {Ai+1}, we can backtrack the tree to try

other nodes without restarting the whole design process. The size of

{Ai+1} is denoted asm. A largem requires more time for generating

{Ai+1}, but also providesmore choices for ranking and backtracking.

We setm = 30 by default in our experiments but it can be adjusted,

depending on the input model.

Below we explain our approach to generate the key part (Subsec-

tion 4.2) and the remaining parts of the assembly (Subsection 4.3).

These steps can be customized to design different kinds of inter-

locking assemblies as discussed in Section 5. Here, we take 2D

interlocking puzzle design as an example for illustration.

4.2 Generating the key

We first partition the input model R0 into P1 and R1, where P1 is

the key and R1 is the remaining part. We construct the geometry

of P1 following the procedure in [Song et al. 2012], i.e., select a

seed pixel, ensure its blocking and mobility, and expand the key

part. Recall that the key is the only movable (thus unstable) part

in an interlocking assembly. Therefore, we restrict P1 to have a

single movable direction in A1 denoted as d1, and usually select

d1 being upward to stabilize P1 with gravity; see Figure 5(b&c) for

two examples. We rank the candidates in {A1} according to the

compactness of R1.

4.3 Generating Pi and Ri (i > 1)

Next, we construct Pi and Ri from Ri−1 in two stages: graph de-
sign and geometry realization. The first stage constructs base DBGs
{G(d,Ai)} that satisfy the interlocking requirement conceptually.

And the second stage aims at realizing the blocking relations de-

scribed in {G(d,Ai)} in the embedded geometry while satisfying

the part connectivity and disassemblability requirements defined in

Subsection 4.1. Note that geometric constraints (e.g., supported joint

types) can be used to simplify graph design by eliminating potential

graph edges that cannot be realized geometrically anyway.

Graph Design for Pi and Ri . Starting from Ai−1 (i ≥ 2), the goal is to

find blocking relations for Pi and Ri such that the updated assembly

Ai is still interlocking. In other words, after splitting Ri−1 into Pi
and Ri in {G(d,Ai−1)} to form {G(d,Ai)}, we need to construct a

set of new edges for Pi and Ri in each G(d,Ai) such that the graph

remains strongly connected, except the key; see Figure 5. To achieve

this goal, we first classify blocking relations to be constructed into

two classes:

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

DESIA: A General Framework for Designing Interlocking Assemblies • 191:7

Fig. 6. (a) An intermediate assemblyA2 and (b) its base DBGG(+x, A2), where the in-edge and out-edge of R2 are colored in dark and light orange respectively;

(c) all cases of distributing existing blocking relations (dark and light orange edges) to P3 and R3; (d) the interlocking graph designs that require the fewest

internal blocking relations (blue edges) between P3 and R3; and (e) the corresponding geometric examples.

Fig. 7. (a) GivenG(d, Ai−1), (b-e) we ensure thatG(d, Ai) is strongly connected by constructing a cycle that includes both Pi and Ri . A dashed ellipse in (a-e)

indicates a subset of parts, i.e., Sin , Sout , and {Pi , Ri }, where Sin (Sout) denotes the set of parts with an edge to (from) Ri−1. The directed edges from (to) a

dashed circle in (b) indicate that the edge can be from (to) any part in the associated subset. The dashed green edges in (c-e) indicate that a part can reach the

other part in G(d, Ai−1) without passing through Ri−1. (f-i) Geometric examples corresponding to (a-e), where d = +x , Sin = {PA }, and Sout = {PC }.

(i) External blocking relations between {P1, .., Pi−1} and Pi , as
well as those between {P1, .., Pi−1} and Ri are inherited from

those between {P1, .., Pi−1} and Ri−1. We need to distribute

these existing blocking relations to Pi and Ri ; see Figure 6(c).

(ii) Internal blocking relations between Pi and Ri . For each case of

distributing external blocking relations, we may need to con-

struct internal blocking relations between Pi and Ri such that

each G(d,Ai) remains strongly connected
1
; see Figure 6(d).

Given these observations, we could find all valid graph designs

by enumerating the distribution of external blocking relations, con-

structing the corresponding internal blocking relations, and test-

ing the strongly connected property of the DBGs. However, this

generate-and-test approach could be very inefficient. The number

of choices to distribute external blocking relations is 3
l
, where l is

the number of edges of Ri−1 in G(d,Ai−1), since each edge of Ri−1

can be distributed to Pi , Ri , or both. Figure 6 shows an example with

3
2 = 9 graph designs, where l = 2.

Rather than enumerating all possible graph designs, we propose

an efficient approach to find a desired number of designs that are

interlocking conceptually; see Figure 7. The key idea is to directly

1
If the key is movable along d , G(d, Ai) is strongly connected without considering

the key. Otherwise, the whole graph of G(d, Ai) should be strongly connected.

guarantee that eachG(d,Ai) is strongly connected by constructing a
cycle in the graph that includes both Pi and Ri , given thatG(d,Ai−1)

is already strongly connected. Denote Sin (Sout) as the set of parts
with an edge to (from) Ri−1, and Pin (Pout) as an arbitrary part in

Sin (Sout); see Figure 7(a&f). According to the number of internal

blocking relations to be constructed between Pi and Ri denoted as

K , we have the following three cases to construct the cycle that we

can choose independently for each DBG.

(1) K=2. Pi → Ri → Pi forms a cycle, i.e., any distribution of

external blocking relations works for this case; see Figure 7(b).

(2) K=1. Pi → Ri → Pout d Pin → Pi (Ri → Pi → Pout d
Pin → Ri) forms a cycle if the single directed edge is from Pi to
Ri (from Ri to Pi); see Figure 7(c&d). Here, Pout d Pin means

that Pout can reach Pin in G(d,Ai−1) without passing through

Ri−1, or Pout and Pin are the same part.

(3) K=0. Pi → Pout d Pin → Ri → P
′

out d P
′

in → Pi forms a

cycle, where Pin and P
′

in (as well as Pout and P
′

out) are possible

to be the same part; see Figure 7(e).

Compared with case 1, cases 2 and 3 rely more on external block-

ing relations than on internal blocking relations to immobilize Pi
and Ri . As a consequence, these two cases impose fewer constraints

on the subsequent geometry construction of Pi and Ri , resulting in a

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

191:8 • Ziqi Wang, Peng Song, and Mark Pauly

Fig. 8. Geometry realization of {G(d, A3)}. (a&b) Identify geometric contacts between {P1, P2 } and R2 in A2. (c-f) Distribute external geometric contacts

between P3 (shows as triangles) and R3 (shown as squares) for (c) G(+x, A3) and (d-f) G(+y, A3), where (d&e) show two failure examples. (g) Realize internal

blocking relation between P3 and R3 in G(+y, A3). (h) Construct initial geometry of P3 and R3. (i) Resulting A3.

higher chance to be successfully realized in the embedded geometry;

compare the geometric examples in Figure 7(g-j).

Besides interlocking, we also need to ensure that Pi is disassem-

blable in [Pi ,Ri]. Thus, we require that there are fewer than two

directed edges between Pi and Ri (i.e., case 2 and 3) in at least one

base DBG. The output of this stage is a set of {G(d,Ai)} that satisfy
the interlocking requirement, denoted as Ci .

Geometry Realization of Pi and Ri . In order to realize {G(d,Ai)}
∈ Ci in the embedded geometry, we perform the following steps,

each corresponding to a counterpart of the graph design stage:

i) Identify external geometric contacts between {P1, ..., Pi−1} and Ri−1.
Recall that a directed edge ei→j from Pi to Pj inG(d,A) means that

Pj blocks the translation of Pi alongd . This indicates that Pi contacts
Pj along d , and Pj locates further than Pi along d ; see again Figure 3.

In an assembly Ai−1, we identify such blocking contacts between Pl
(1 ≤ l ≤ i − 1) and Ri−1 for each base direction d by computing the

overlap of the respective boundaries along d (−d), see Figure 8(a&b).

ii) Distribute external geometric contacts. An external blocking

relation, say between Pl and Ri−1, in a DBG G(d,Ai−1) can be dis-

tributed to Pi , Ri , or both. For the first two cases, the corresponding
geometric contacts need to be all assigned to Pi or Ri respectively;
see Figure 8(f). For the last case, the geometric contacts need to be

partitioned into two subsets and assigned to Pi and Ri separately;
see Figure 8(c).

However, this step could fail for two reasons. First, the external

geometric contact could be too small to be partitioned. For example,

Fig. 9. (a) Internal blocking relations between Pi and Ri in G(+x, Ai). (b)
Find blocking and blockee pixels in Ri−1 (in orange) according to the block-

ing relations, where blocking and blockee pixels in (b) and their associated

blocking relation in (a) are colored the same (light or dark blue). (c) Initial

geometry of Pi and Ri . (d) Final geometry of Pi and Ri . (e&f) Two failure
examples due to disconnectivity of Pi or Ri (see the red cross).

R2 contacts P2 along +y with a single pixel in Figure 8 (b). Yet, this

single pixel (marked with a red circle in Figure 8(d)) needs to be

assigned to both P3 and R3 according to the computed blocking

relations, which is not feasible. Second, the assignment of geometric

contacts may conflict with one another across multiple DBGs. For

example, two pixels marked with red circles in Figure 8(c) need to

be assigned to R3 to realize G(+x ,A3). However, these two pixels

also need to be assigned to P3 to realize G(+y,A3) in Figure 8(e),

leading to a conflict.

iii) Construct internal geometric contacts. If G(d,Ai) has K ∈ {1, 2}
internal blocking relations, we need to construct geometric contacts

between Pi and Ri . Here, we take as an example the case of realizing

a single directed edge from Pi to Ri to illustrate our approach; see

Figure 9(top). Inspired by [Song et al. 2012], we find among all

unassigned pixels in Ri−1 a pair of blocking and blockee pixels that

contact each other along d , denoted as Bд and Be respectively. We

then assign Be to Pi and Bд to Ri . Other cases of realizing internal

blocking relations can be handled similarly; see Figure 9.

iv) Construct initial parts geometry. By now, we have identified all

the pixels in Ri−1 that need to be assigned to Pi or Ri to make Ai
interlocking. To form an initial Pi (Ri), we connect these pixels into
a single part using the shortest path; see Figure 8(h) and 9(c). Note

that this connection process can fail since we may not be able to find

such a shortest path without disconnecting parts; see Figure 9(e&f)

for examples.

v) Ensure disassemblability. To make Pi movable in [Pi ,Ri], we first
identify all possible moving directions of Pi in {G(d,Ai)}, i.e., the
directions where Pi is unblocked by Ri ; e.g., P3 could be movable

along {−x ,+x ,+y} in [Pi ,Ri] according to the blocking graph in

Figure 8(c&g) . We try each possible moving direction of the initial

Pi and discard those that cannot be achieved in the embedded geom-

etry. We consider that Pi is disassemblable in [Pi ,Ri] if we can find

one movable direction of Pi , along with a disassembly path. Lastly,

we assign those remaining pixels in Ri−1 (see orange pixels in Fig-

ure 9(c)) to Pi and Ri respectively according to geometric proximity

with preference to Ri , while maintaining the disassemblability of Pi
in [Pi ,Ri]; see Figure 8(i) and 9(d).

A graph design is realized if all above steps succeed. Otherwise,

we discard this design and try another one in Ci . If all candidates
in Ci fail, we backtrack to the other nodes in the construction tree

following the procedure in Algorithm 1.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

DESIA: A General Framework for Designing Interlocking Assemblies • 191:9

Fig. 10. (a) Starting from a 4×4×4 voxel grid, (b-g) our framework iteratively constructs 9 parts of an interlocking Cube. Three DBGs are drawn for each

intermediate assembly at the bottom. Our approach allows immobilizing Pi and Ri by constructing cycles of various sizes (examples colored in purple).

5 RESULTS AND DISCUSSION

In this section we show how our framework can be used to design

various kinds of interlocking assemblies, with example applications

as puzzles, furniture, sculptures, or architectural designs. We high-

light differences to previous approaches to show how our method

improves the state of the art and enables new kinds of interlocking

assemblies not possible before. For more detailed comparisons and

results, we refer to the supplementary material.

5.1 Interlocking Voxelized Structures

Given a voxelized shape and a desired number of parts N as input,

our goal here is to decompose the voxel set into a collection of parts

that form an interlocking assembly [Song et al. 2012]. Figure 10

Fig. 11. Illustration of the model of [Song et al. 2012] based on our DBG-

based representation. Their approach achieves global interlocking of An by

requiring every [Pi−1, Pi , Ri] (2 ≤ i ≤ n) to form a local interlocking group

with Pi−1 as the key. In detail, Pi−1 and Ri−1 in G(d, Ai−1) are possible

to have (a) zero, (b) one, and (c) two directed edges. (a&b) Pi and Ri are
immobilized in a 2-part cycle [Pi , Ri]; (c) Pi and Ri are immobilized in either

a 2-part cycle [Pi , Ri], [Pi−1, Pi], [Pi−1, Ri], or a 3-part cycle [Pi−1, Pi , Ri].

shows our iterative design process for creating a 9-part 4 × 4 × 4

interlocking Cube.

The major difference between our approach and [Song et al. 2012]

is the graph design of Pi and Ri to ensure interlocking of Ai . Our

approachmakes use of all previous parts {P1, ..., Pi−1} to immobilize

Pi and Ri . (i.e., form a cycle in each {G(d,Ai)}; see Figure 7 and 10),
while [Song et al. 2012] only relies on Pi−1 to immobilize Pi and
Ri (i.e., form a 2-part or a 3-part cycle in the DBGs; see Figure 11).

Note that our approach can easily generate recursive interlocking

puzzles as [Song et al. 2012] by constraining our graph design as

shown in Figure 11.

Fig. 12. (a&b) Interlocking Bunnies (966 voxels). (a) The method of [Song

et al. 2012] can find an assembly with maximally 40 parts while (b) our

approach can find one with 80 parts. (c&d) Interlocking 35 × 35 × 35 Cubes.

(c) The method of [Song et al. 2012] can find an assembly with maximally

1250 parts while (d) our approach can find one with 1500 parts.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

191:10 • Ziqi Wang, Peng Song, and Mark Pauly

Fig. 13. Design of a 7-part interlocking Cabinet by our approach. (a) Input design and parts-graph. (b-g) The iterative procedure to plan the joints, where the

removal direction di of Pi is shown in the top row and the active DBG G(di , Ai) is shown at the bottom row. All orange nodes in each DBG form Ri and the

node with dashed boundary is Pi . (h) Interlocking result and the corresponding parts.

Fig. 14. Our approach ismuch faster than [Song et al. 2012] when generating

10-, 75-, and 150-part 30 × 29 × 23 Bunnies.

Fig. 15. Design a 20-part Isidore Horse with different criteria for ranking

{Ai+1 }: (a) compactness of Ri+1 (default criteria); (b) X-coordinate of Pi+1;

and (c) Y-coordinate of Pi+1. The ranking criteria could affect the assembly

sequence; e.g., parts are disassembled from left to right for (b) and from top

to bottom for (c), starting from the green key part (see the green arrow).

Exploiting all existing blocking relations to immobilize Pi and
Ri provides significantly more degrees of freedom for designing

interlocking assemblies. This allows us to incorporate additional

design goals, for example, on object appearance as for the Cartoon

Dog in Figure 1. Here we impose constraints that avoid cutting

seams across geometric features, so that eyes, ears, nose, and tail

are each assigned to a single assembly part. Second, as shown in

Figure 12, our approach can find interlocking assemblies with more

parts than [Song et al. 2012] for the same input. Given the same

input model and the sameN , our approach also takes a much shorter

time than [Song et al. 2012] to generate results, even though we

explore a much richer space of possible assemblies; see Figure 14.

Lastly, our approach gives users more control for generating results

by allowing them to select their desired criteria for ranking {Ai+1};

see Figure 15 for an example.

5.2 Interlocking Plate Structures

A second class of assemblies that we can create with our approach

are interlocking plate structures that have applications in furniture

design or architecture, for example. These assemblies differ in two

main ways from the voxelized assemblies described above. First, the

geometry of parts and their connections are predefined. We model

part connections with an undirected parts-graph, in which nodes rep-
resent parts, and edges connect two contacting/intersecting parts;

see Figure 13(a). Blocking relations can only be constructed between

parts connected in the parts-graph. The dual of a parts-graph is a

joints-graph, where nodes represent joints and edges represent parts;
see Figure 19(a). Second, we use a set of predefined joint geome-

tries to impose blocking relations between each pair of adjacent

parts in the structure. Specifically, we consider mortise-and-tenon,

halved, and dovetail joints that restrict each part to move along

a single direction; see Figure 2. To support non-orthogonal part

connections, we consider suitable variants of mortise-and-tenon

and halved joints; see Figure 16. In plate structures, the edge vectors

shared between each part Pi and its adja-

cent parts indicate the base directions {d}
(see the arrows in the inset for examples),

which degenerate into six axial directions

for structures where parts are orthogonally

connected; see Figure 17(a).

To address the above specifics of interlocking plate structures, we

have the following adaptations compared to the voxelized structures.

First, instead of decomposing Ri−1 into Pi and Ri , we iteratively se-

lect a single part Pi from the input, and consider the set of unselected

parts as Ri ; see Figure 13(b-g). Second, rather than constructing ge-

ometry of Pi and Ri , we construct joints between Pi and each part in

Ri that are connected with Pi in the parts-graph denoted as R
′

i such

that Ai (i ≥2) is interlocking. Since all our employed joints allow a

single removal direction of the parts, the removal direction of Pi in
[Pi ,Ri] denoted as di completely defines the joints to be constructed

Fig. 16. Variants of (a) mortise-and-tenon joints and (b) halved joints that

support non-orthogonal part connections with surface contact.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

DESIA: A General Framework for Designing Interlocking Assemblies • 191:11

Fig. 17. Design of a 6-part interlocking Table with orthogonal joints. (a) Input design and parts-graph. (b-f) The iterative procedure to plan the joints. (g)

Interlocking result and the corresponding parts.

beween Pi and each part in R
′

i . Third, to achieve interlocking, we

only need to ensure that the active base DBG G(di ,Ai) is strongly
connected; see DBGs in Figure 13(b-g). The other base DBGs should

remain strongly connected since the newly introduced joints only

allow part moving along di but not the other base directions.

Our iterative approach is detailed as follows:

• Iterative Design Framework. Starting from the key P1, we itera-

tively select a single part Pi from parts in Ri−1. We avoid selecting

Pi that is a cut point in the remaining parts-graph of Ri−1 to keep

the geometry of Ri connected. Once Pi is selected, our task is to

select di from the edge vectors {ei } shared between Pi and its

adjacent parts.

• Generating the key. Generally, we select P1 as the part with the

most parallel edge vectors, and use this direction as P1’s removal

direction d1 to facilitate joint construction on the key; see Fig-

ure 13(b). This is because we create a halved joint for the edge that

is parallel to d1, a mortise-tenon joint for the edge that is nearly

perpendicular to d1 (angle within [45
◦, 135

◦]), and an empty joint

for the other edges. After selecting P1 and d1, we plan a joint

between P1 and each part in R
′

1
(e.g., R

′

1
= {P2, P4, P5, P7} in

Figure 13(b)) such that P1 is only movable along d1.

• Generating Pi and Ri (i > 1). At the graph design stage, we need

to select di from {ei } such that G(di ,Ai) is strongly connected,

which can be classified into two cases. The first case is that ±di <
{d1, ...,di−1}. For this case, we buildG(di ,Ai) by converting each
undirected edge among {P1, ..., Pi−1,Ri−1} in the parts-graph into

two directed edges and adding a single directed edge between Pi
and each part in R

′

i . The G(di ,Ai) should be strongly connected

by default; see Figure 13(c). The second case is that di or −di
∈ {d1, ...,di−1}, say di = dk (1 ≤ k ≤ i − 1). G(di ,Ai) inherits all
blocking directions fromG(dk ,Ai−1) and we add a single directed

edge between Pi and each part in R
′

i . We try each of ±di and
accept di (−di) ifG(di ,Ai) (G(−di ,Ai)) is strongly connected; see
Figure 13(g).

At the geometry realization stage, we use constructive solid ge-

ometry to create the joint geometry on Pi and each part in R
′

i
according to the joint type planned at the graph design stage.

We rank the resulting candidates of Ai in ascending order of the

number of empty joints in Ai .

Fig. 18. Left: a Chair and its parts-graph, where a cut point (i.e., P5) exists.

Right: after adding a new part (i.e., P9), our approach can generate an

interlocking joint configuration, where the axial removal direction allowed

by each joint is shown in the corresponding edge in the parts-graph.

Figure 13(h) shows an interlocking Cabinet designed by our

approach. Besides furniture, plate structures also can be used to

approximate a free form shape; see the 33-part Lizard in Figure 1

for an example. Since the DBG-based approach is not sufficient to

test interlocking for these plate structures with non-orthogonal

part connections (see Subsection 3.2), we verify the two results by

running the inequality-based interlocking test and find that both

results pass the test.

In the special case of orthogonal joints, our approach generalizes

the furniture design work of [Fu et al. 2015]; see Figure 17 for an

example. In particular, Fu et al. [2015] focus on furniture with 3-

or 4-part cyclic substructures since their approach requires these

substructures to construct LIGs. In contrast, our approach does not

have such a limitation; see the Bookshelf with four 6-part cyclic

substructures in Figure 1.

Lastly, inspired by our DBG-based representation, we find that

a parts-graph with a cut point cannot be interlocking, no matter

what kinds of joints are used; see Figure 18(left) for an example

and supplementary material for a proof. This observation allows us

to modify a given input to make it possible to be interlocking by

adding a minimal number of new parts in the parts-graph in order

to remove the cut point; see Figure 18(right) for an example.

5.3 Interlocking Frame Structures

As a new class of interlocking assembly, we propose interlocking
frame structures that can be considered as a hybrid of the voxelized

and the plate assemblies. A frame structure is a network of beams

joined to represent a desired target shape. As input we assume a

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

191:12 • Ziqi Wang, Peng Song, and Mark Pauly

Fig. 19. Design of a 12-part interlocking Frame Cube. (a) Input frame design, parts-graph, and joints-graph. (b-f) The iterative procedure to construct the voxel

joints, where the dashed ellipses highlight the set of parts in Ri that connect with Pj (j ≤ i) using voxel joints. (g) The interlocking result.

3D polygonal mesh, where each edge represents a beam and each

vertex represents a joint.

Compared with the plate assemblies, frame structures have two

more challenges. First, frame structures require connecting more

than two parts at a joint, making traditional woodworking joints

unsuitable; see the joints-graph in Figure 19(a). Thus, we propose

to connect the beams with cube-shaped voxel joints. To make the

problem tractable, we assume that each face of the joint connects to

at most one beam at the center voxel, and thus each joint connects

at most six beams (i.e., valence of the input mesh should be at most

6). Second, we need to individually optimize the geometry of each

voxel joint. We place an axis-aligned 3 × 3 × 3 cube at each joint

location and partition the cubes into partial joints to restrict the

relative movement of the connected beams; see the eight corners of

the Frame Cube in Figure 19(a). Compared to the plate structures,

these specifics require the following adaptations to our framework:

• Generating the key. For the voxel joint at each end of P1, we take

the voxel preassigned to P1 as a seed and include more voxels to

P1 such that it is movable along a singe axial direction following

Subsection 4.2. Denote the subset of parts that connect with P1 at

each end as Sk
1
= {Pl }, where k ∈ {1, 2}; see the dashed circles

in Figure 19(b). After constructing P1, we draw directed edges

between P1 and each Sk
1
in the DBGs accordingly.

• Generating Pi and Ri (i > 1). At the graph design stage, we clas-

sify parts in each Ski into two groups: {P̀l } where each part is

from {P1, ..., Pi−1} and {Ṕl } where each part is from Ri . If {Ṕl }
is empty, the blocking relations within this voxel joint are com-

pletely defined. So the graph design of Pi and Ri can be skipped

Fig. 20. Interlocking 1.0m × 0.5m × 0.5m Frame Chair. The voxel joints are

fabricated by gluing wooden cubes in the spatial arrangement computed

by our algorithm. When attached to the corresponding wooden pillars, all

pillars can be connected into a steady interlocking assembly.

for this joint; see joint J (1, 2, 5) in Figure 19(f), where Pi = P5,

{P̀l } = {P1, P2}. If {P̀l } is empty, we do not need to distribute

external blocking relations in this joint; see joint J (2, 4, 7) in Fig-

ure 19(c), where Pi = P2, {Ṕl } = {P4, P7}. Otherwise, we distribute

external blocking relations associated with {P̀l } to Pi and parts in

{Ṕl } respectively; see joint J (1, 2, 5) in Figure 19(c). Constructing

internal blocking relations is restricted to Pi and parts in {Ṕl }

for each Ski . To ensure that Pi is disassemblable in [Pi ,Ri], say
along di , we construct a single directed edge between Pi and each

part in {Ṕl } for both Ski in at least one DBG; see G(+x ,A2) in

Figure 19(c) for an example.

The geometry realization of Pi and Ri is conducted within the

voxel joint at each end of Pi following the approach in Subsec-

tion 4.3; see corners of the Frame Cube in Figure 19(c-f).

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

DESIA: A General Framework for Designing Interlocking Assemblies • 191:13

Figure 19(g) shows the resulting interlocking Frame Cube, in

which every three beams joining at a corner are connected by a

carefully constructed three-way voxel joint. Note that all joints are

distinct even though all corners are symmetric. This illustrates how

the assembly order dictates the geometry of the joints, more so than

the geometry of the parts.

Our approach can generate frame structures with different joint

valence, e.g., the valence in the Frame Chair in Figure 20 can be 2, 3

or 4. We fabricate this result using wooden pillars and small wooden

cubes to validate its steadiness;

see supplementary video for the

live demo. The Flower in Fig-

ure 1 shows another result, where

curved beams are connected by

the voxel joints to form an appeal-

ing structure. Our approach can

generate frame structures with a

large number of parts; see the 92-

part Scaffold in the inset. To

the best of our knowledge, these

are the first single-key interlocking
frame structures.

5.4 Implementation and Performance

Our C++ implementation runs on an iMac with a 4.2GHz CPU and

32GB memory. In general, the timing performance depends on the

input model, the number of parts N , and additional design require-

ments; see Table 1. The computation time to create interlocking

voxelized structures highly depends on the number of desired parts.

For example, the interlocking 4 × 4 × 4 Cubes (Figure 10) with 7, 8,

and 9 parts take 0.3 seconds, 12 seconds, and 1.13 hours respectively.

For larger N , it becomes increasingly difficult to find an interlocking

assembly since smaller parts have fewer potential blocking contacts.

Enforcing additional design requirements can also increase the com-

putation time substantially. For example, creating Cartoon Dog

(Figure 1) without constraints takes 23.3 seconds, while incorpo-

rating the appearance constraints increases computation to 1.06

hours, since significantly more backtracking is required to ensure

that the constructed parts align with the features. For more details

Table 1. Statistics of results generated by our framework. The labels in

4rd to 6th columns refer to the number N of parts, the number M of base

directions, and the time for generating the result.

on the implementation of our approach, we refer to the source code

provided in the supplementary material.

Our approach creates interlocking plate structures very efficiently

due to the relatively small search space. For example, it takes 0.07 sec-

onds to compute Cabinet in Figure 13. Due to the non-orthogonal

part connections in the Cabinet, it further takes 0.02 seconds to

verify interlocking by performing the inequality-based test. Hence,

the total time to generate this result is 0.09 seconds; see Table 1.

The other result with non-orthogonal part connections (i.e., Lizard

in Figure 1) takes 0.03 seconds to verify its interlocking. Design-

ing frame structures is also fast since the 3 × 3 × 3 cubes that are

optimized at each joint location have only 27 voxels. In particular,

it takes much longer time to generate the Frame Chair than the

Frame Cube although they have similar number of parts; see Table 1.

This is mainly due to the lower number of cycles in the parts-graph

of the Frame Chair, which makes it harder to find interlocking

configurations.

6 CONCLUSION

Combining parts into an interlocking assembly imposes strong con-

straints on the part geometry and arrangement. Our novel frame-

work leverages carefully designed graph representations and algo-

rithms to efficiently test whether an assembly of parts is interlocking.

This efficiency and the generality of our tree-traversal algorithm

allows us to explore a significantly larger configuration space com-

pared to previous solutions. As a consequence, our approach can

find interlocking assemblies for models that previous methods fail

on, allows integrating additional geometric constraints to better

meet the design goals, and enables new types of assemblies not

possible before.

Limitations and Future Work. Our work has several limitations that

open up interesting directions for future research. First, the DBG-

based representation models only the infinitesimal translational mo-

tions of the parts. Finding a conceptual representation that supports

extended translational motions (e.g., for avoiding global collision)

would be helpful for testing interlocking and disassemblability in

a unified manner. Currently we assume planar inter-part contact

and translational assembly motion. While this simplifies the con-

ceptual representation as well as the fabrication and construction of

interlocking assemblies, generalizations to non-planar contact and

more complex assembly motions [Zhang et al. 2018] could lead to

new types of assemblies. We currently do not analyze the structural

implications of the way individual parts are connected. As a future

work, it would be valuable to optimize the stress distribution to

avoid local stress concentrations in the assembly. Another impor-

tant aspect that is currently not covered in our work is tolerance

handling. Fabrication imprecisions lead to deviations in the part

geometries that can accumulate and negatively impact the stability

of the assembly. How to design for robustness against such error

accumulation is an exciting future research problem. The frame

structure that we introduce in this paper is just one instance of

a broader class of possible assemblies where joint geometries are

optimized together with the assembly, instead of being selected

from a set of predefined joint types. Voxelized cube joints do not

necessarily provide the most appropriate connection and novel joint

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

191:14 • Ziqi Wang, Peng Song, and Mark Pauly

typologies could be discovered in the future that are better suited for

the kind of multi-part joints that we studied in this paper. Other po-

tential directions for future work include assemblies of deformable

parts [Skouras et al. 2015] or reconfigurable assemblies.

ACKNOWLEDGMENTS

We thank the reviewers for the valuable comments, Zhe Chen and

Fengyuan Yang for their help in fabricating the frame chair, and

Mina Konaković-Luković for proofreading the paper. This work was

supported by the NCCR Digital Fabrication, funded by the Swiss

National Science Foundation, NCCR Digital Fabrication Agreement

#51NF40-141853.

REFERENCES

Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat

Hanrahan, and Barbara Tversky. 2003. Designing Effective Step-By-Step Assembly

Instructions. ACM Trans. on Graph. (SIGGRAPH) 22, 3 (2003), 828–837.
Marco Attene. 2015. Shapes In a Box: Disassembling 3D Objects for Efficient Packing

and Fabrication. Computer Graphics Forum 34, 8 (2015), 64–76.

Lujie Chen and Lawrence Sass. 2015. Fresh Press Modeler: A generative system for

physically based low fidelity prototyping. Computers & Graphics 54 (2015), 157–165.
Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich Benes,

Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-pack for 3D

Printing. ACM Trans. Graph. 34, 6 (2015), 213:1–213:12.
Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. 2014. Field-aligned

Mesh Joinery. ACM Trans. on Graph. 33, 1 (2014), 11:1–11:12.
Fernando de Goes, Pierre Alliez, Houman Owhadi, and Mathieu Desbrun. 2013. On the

Equilibrium of Simplicial Masonry Structures. ACM Trans. Graph. (SIGGRAPH) 32,
4 (2013). Article 93.

Bansal Deepak. 2012. Sustainable Dry Interlocking Block Masonry Construction. In

15th International Brick and Block Masonry Conference.
Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-

Hornung, and Mark Pauly. 2014. Assembling Self-Supporting Structures. ACM
Trans. on Graph. (SIGGRAPH Asia) 33, 6 (2014). Article No. 214.

Noah Duncan, Lap-Fai Yu, and Sai-Kit Yeung. 2016. Interchangeable Components for

Hands-On Assembly Based Modelling. ACM Trans. on Graph. (SIGGRAPH Asia) 35,
6 (2016). Article No. 234.

Ursula Frick, TomVanMele, and Philippe Block. 2015. Decomposing Three-Dimensional

Shapes into Self-supporting, Discrete-Element Assemblies. In Modelling Behaviour.
187–201.

Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar Jayaraman, and

Daniel Cohen-Or. 2015. Computational Interlocking Furniture Assembly. ACM
Trans. on Graph. (SIGGRAPH) 34, 4 (2015). Article No. 91.

Somayé Ghandi and Ellips Masehian. 2015. Review and taxonomies of assembly and

disassembly path planning problems and approaches. Computer-Aided Design 67-68

(2015), 58–86.

Jianwei Guo, Dong-Ming Yan, ErLi, Weiming Dong, Peter Wonka, and Xiaopeng Zhang.

2013. Illustrating the disassembly of 3D models. Computers & Graphics 37, 6 (2013),
574–581.

Jingbin Hao, Liang Fang, and Robert E. Williams. 2011. An Efficient Curvature-based

Partitioning of Large-scale STL Models. Rapid Prototyping Journal 17, 2 (2011),

116–127.

Kristian Hildebrand, Bernd Bickel, and Marc Alexa. 2012. crdbrd: Shape Fabrication by

Sliding Planar Slices. Comp. Graph. Forum 31, 2 (2012), 583–592.

Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate

Pyramidal Shape Decomposition. ACM Trans. Graph. 33, 6 (2014), 213:1–213:12.
Bongjin Koo, Jean Hergel, Sylvain Lefebvre, and Niloy J. Mitra. 2017. Towards Zero-

Waste Furniture Design. IEEE Trans. Vis. & Comp. Graphics 23, 12 (2017), 2627–2640.
Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011. Converting

3D furniture models to fabricatable parts and connectors. ACM Trans. on Graph.
(SIGGRAPH) 30, 4 (2011). Article No. 85.

Wilmot Li, Maneesh Agrawala, Brian Curless, and David Salesin. 2008. Automated

Generation of Interactive 3D Exploded View Diagrams. ACM Trans. on Graph.
(SIGGRAPH) 27, 3 (2008). Article No. 101.

Yang Liu, Pan Hao, John Snyder, Wenping Wang, and Baining Guo. 2013. Computing

Self-Supporting Surfaces by Regular Triangulation. ACM Trans. Graph. (SIGGRAPH)
32, 4 (2013). Article 92.

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper:

Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6 (2012), 129:1–
129:9.

James McCrae, Nobuyuki Umetani, and Karan Singh. 2014. FlatFitFab: Interactive

Modeling with Planar Sections. In ACM Symposium on User Interface Software and
Technology. 13–22.

Masaaki Miki, Takeo Igarashi, and Philippe Block. 2015. Parametric Self-supporting

Surfaces via Direct Computation of Airy Stress Functions. ACM Trans. Graph.
(SIGGRAPH) 34, 4 (2015). Article 89.

Daniele Panozzo, Philippe Block, and Olga Sorkine-Hornung. 2013. Designing Unrein-

forced Masonry Models. ACM Trans. on Graph. (SIGGRAPH) 32, 4 (2013). Article
No. 91.

Ronald Richter and Marc Alexa. 2015. Beam meshes. Computers & Graphics 53 (2015),
28–36.

Matthias Rippmann, Tom Van Mele, Mariana Popescu, Edyta Augustynowicz,

Tomás Méndez Echenagucia, Cristián Calvo Barentin, Ursula Frick, and Philippe

Block. 2016. The Armadillo Vault: Computational design and digital fabrication of a

freeform stone shell. In Advances in Architectural Geometry. 344–363.
Yuliy Schwartzburg and Mark Pauly. 2013. Fabrication-aware Design with Intersecting

Planar Pieces. Comp. Graph. Forum 32, 2 (2013), 317–326.

Tianjia Shao, Dongping Li, Yuliang Rong, Changxi Zheng, and Kun Zhou. 2016. Dy-

namic Furniture Modeling Through Assembly Instructions. ACM Trans. on Graph.
(SIGGRAPH Asia) 35, 6 (2016). Article No. 172.

Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015.

Interactive Surface Design with Interlocking Elements. ACM Trans. on Graph.
(SIGGRAPH Asia) 34, 6 (2015). Article No. 224.

A. S. Solodovnikov. 1979. Systems of Linear Inequalities. Mir Publishers.

Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang

Liu. 2016. CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects. ACM Trans. on
Graph. (SIGGRAPH) 35, 4 (2016). Article No. 45.

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles.

ACM Trans. on Graph. (SIGGRAPH Asia) 31, 6 (2012). Article No. 128.
Peng Song, Chi-Wing Fu, Yueming Jin, Hongfei Xu, Ligang Liu, Pheng-Ann Heng, and

Daniel Cohen-Or. 2017. Reconfigurable Interlocking Furniture. ACM Trans. on
Graph. (SIGGRAPH Asia) 36, 6 (2017). Article No. 174.

Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. 2015. Printing 3D Objects with

Interlocking Parts. Comp. Aided Geom. Des. 35-36 (2015), 137–148.
Rob Stegmann. 2018. Rob’s Puzzle Page - Interlocking Puzzles. (2018). http://www.

robspuzzlepage.com/interlocking.htm.

Alan Song-Ching Tai. 2012. Design For Assembly: A Computational Approach to Con-
struct Interlocking Wooden Frames. Ph.D. Dissertation. Massachusetts Institute of

Technology.

Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut

Pottmann. 2014. Form-finding with polyhedral meshes made simple. ACM Trans.
Graph. (SIGGRAPH) 33, 4 (2014). Article 70.

Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput.
1, 2 (1972), 146–160.

J. Vanek, J. A. Garcia Galicia, B. Benes, R. Měch, N. Carr, O. Stava, and G. S. Miller. 2014.

PackMerger: A 3D Print Volume Optimizer. Computer Graphics Forum 33, 6 (2014),

322–332.

E. Vouga, M. Höbinger, J. Wallner, and H. Pottmann. 2012. Design of self-supporting

surfaces. ACM Trans. Graph. (SIGGRAPH) 31, 4 (2012), Article 87.
Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling of

Structurally-Sound Masonry Buildings. ACM Trans. Graph. (SIGGRAPH Asia) 28, 5
(2009). Article 112.

Randall H. Wilson. 1992. On Geometric Assembly Planning. Ph.D. Dissertation. Stanford
University.

Randall H. Wilson and Jean-Claude Latombe. 1994. Geometric Reasoning About Me-

chanical Assembly. Artificial Intelligence 71, 2 (1994), 371–396.
Shi-Qing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-TsinWong, Ying He, and Daniel Cohen-Or.

2011. Making Burr Puzzles from 3D Models. ACM Trans. on Graph. (SIGGRAPH) 30,
4 (2011). Article No. 97.

Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017b. In-

teractive Design and Stability Analysis of Decorative Joinery for Furniture. ACM
Trans. on Graph. 36, 2 (2017). Article No. 20.

Miaojun Yao, Zhili Chen, Weiwei Xu, and Huamin Wang. 2017a. Modeling, Evaluation

and Optimization of Interlocking Shell Pieces. Comp. Graph. Forum 36, 7 (2017),

1–13.

Yinan Zhang and Devin Balkcom. 2016. Interlocking Structure Assembly with Voxels.

In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. 2173–2180.
Yinan Zhang, Emily Whiting, and Devin Balkcom. 2018. Assembling and Disassembling

Planar Structures with Divisible and Atomic Components. IEEE Transactions on
Automation Science and Engineering 15, 3 (2018), 945–954.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 191. Publication date: November 2018.

http://www.robspuzzlepage.com/interlocking.htm
http://www.robspuzzlepage.com/interlocking.htm

	Abstract
	1 Introduction
	2 Related Work
	3 Model Interlocking Assemblies
	3.1 Graph Model
	3.2 Testing Interlocking
	3.3 Testing Disassemblability

	4 Computational Design Framework
	4.1 Iterative Design Framework
	4.2 Generating the key
	4.3 Generating Pi and Ri (i>1)

	5 Results and Discussion
	5.1 Interlocking Voxelized Structures
	5.2 Interlocking Plate Structures
	5.3 Interlocking Frame Structures
	5.4 Implementation and Performance

	6 Conclusion
	References

