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Fig. 1. A topological interlocking assembly (a) designed with our approach to conform to an input freeform design surface (b). The 3D printed prototype (c-e)

is stable under different orientations.

We study assemblies of convex rigid blocks regularly arranged to approx-

imate a given freeform surface. Our designs rely solely on the geometric

arrangement of blocks to form a stable assembly, neither requiring explicit

connectors or complex joints, nor relying on friction between blocks. The

convexity of the blocks simplifies fabrication, as they can be easily cut from

different materials such as stone, wood, or foam. However, designing stable

assemblies is challenging, since adjacent pairs of blocks are restricted in their

relative motion only in the direction orthogonal to a single common planar

interface surface. We show that despite this weak interaction, structurally

stable, and in some cases, globally interlocking assemblies can be found

for a variety of freeform designs. Our optimization algorithm is based on

a theoretical link between static equilibrium conditions and a geometric,

global interlocking property of the assembly—that an assembly is globally in-

terlocking if and only if the equilibrium conditions are satisfied for arbitrary

external forces and torques. Inspired by this connection, we define a measure

of stability that spans from single-load equilibrium to global interlocking,

motivated by tilt analysis experiments used in structural engineering. We

use this measure to optimize the geometry of blocks to achieve a static

equilibrium for a maximal cone of directions, as opposed to considering
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only self-load scenarios with a single gravity direction. In the limit, this

optimization can achieve globally interlocking structures. We show how

different geometric patterns give rise to a variety of design options and

validate our results with physical prototypes.
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1 INTRODUCTION

This paper is about assemblies of convex rigid blocks. More specif-

ically, we study how an ensemble of convex blocks, arranged in

a regular topology to approximate a freeform surface, can form

stable assemblies. Consider the two cubes of Figure 2-a. Assuming

no friction forces act on the interface, a necessary condition for the

cubes to form a stable stack is that the contact plane is orthogonal

to the direction of gravity. In addition, we require that the center

of gravity of the top block projects down into the contact polygon.

This arrangement is in static equilibrium, but this equilibrium itself

is not stable. Even the slightest tilt of the stack in any direction will

cause the top block to slide and topple off.

Now let us consider three blocks (Figure 2-b). The light gray

block on top has two contacts, each constraining its motion in the
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Fig. 2. Stability of cubes. Assuming the dark gray cubes are fixed and no

friction forces act on the contact surfaces, the light gray cube is supported

for a single gravity direction (a), an arc of directions (b), a patch of directions

(c), and all directions (d).

direction orthogonal to the contact plane. In this case, we can tilt

the ensemble around the axis defined by the intersection of the

contact planes and retain an equilibrium state. Effectively, the space

of tilt directions under which the assembly is in equilibrium has

been expanded from a single point to a 1D arc.

Adding a third support block allows creating a 2D set of equi-

librium directions (Figure 2-c). The top block is now in a stable

configuration when tilting the ground plane around an arbitrary

axis in some limited angle range. For a single cube to be completely

immobilized no matter how the ensemble is rotated, we would need

to constrain all six contact planes (Figure 2-d). In fact, this arrange-

ment can be extended to form a regular assembly of cubes that cover

the plane (see Figure 5-b). This specific pattern forms a so-called

topological interlocking (TI) assembly [Dyskin et al. 2019]. Assum-

ing the boundary is fixed, all interior cubes are mutually blocking

each other. More specifically, this arrangement also forms a globally
interlocking structure, where each part and each subset of parts is

immobilized [Song et al. 2012].

Do we always need six neighbors to completely immobilize a

convex element? The answer is no, because we can construct a

non-empty polytope by intersecting four planes, hence a block

constructed in this way can be completely immobilized by four

neighbors. This construction is well known and has been used, for

example, in the Abeille vault structure shown in Figure 3. These

types of planar regular assemblies composed of identical blocks

have been extensively studied in material science and mechanical

engineering, where they have proven to have superior structural

properties; see detailed discussion in Section 2.

So can we extend this concept from planar assemblies to curved

freeform surfaces? And can we retain the advantageous structural

Fig. 3. The Abeille vault (sketch from 1734 on the left) is a globally inter-

locking assembly composed of identical convex blocks that form a planar

roof structure (right).

Fig. 4. A globally interlocking assembly following Abeille’s construction (a) is

lifted onto a spherical surface (b). While each block is still immobilized with

respect to its neighbors, a subset of blocks can move simultaneously along

different trajectories (c). The purple lines in (b) indicate the instantaneous

velocity of each block for this disassembly motion. As a consequence, the

assembly is not globally interlocking.

properties of planar TI assemblies, in particular the global interlock-

ing property? It is clear that we cannot use identical elements if

we want to closely approximate a double curved surface. However,

we can easily modify the shapes of the blocks so that the assembly

conforms well to a given design surface [Fallacara et al. 2019]. For

example, the assembly shown in Figure 4, created by a constructive

method detailed later, well approximates a spherical design surface.

Each block in this assembly is immobilized by its neighbors, i.e.,

no block can move if we assume each adjacent block is fixed. With

the global peripheral constraint given by a complete ring of fixed

boundary blocks shown in dark gray, the assembly should then be

globally interlocking.

Unfortunately, this reasoning is flawed. While it is true that no

block can move individually, sub-groups of blocks can move si-
multaneously along different trajectories (see also supplementary

video). This kind of multi-part instability is not captured by existing

methods and provides a first indication that globally interlocking

TI assemblies are difficult to obtain for curved surfaces. Motivated

by this observation, we focus on designing TI assemblies that are as

close to global interlocking as possible.

Contributions. Our goal is to design structurally stable assemblies

with convex rigid blocks that closely conform to a given design

surface. We focus in this paper on convex elements with planar

faces because they can easily be fabricated by blade or wire cutting,

but also because of their superior structural integrity [Alexandrov

2005]. Geometrically, however, the convexity of blocks poses the

biggest challenge in terms of creating stable assemblies, because

two adjacent parts are only constrained in one direction by their

mutual contact. To address this challenge, we make the following

contributions:

• We introduce a new, general algorithm to test for global interlock-

ing that considers not only part translation, but also rotation, thus

avoiding false positives that can occur with existing methods.

• We formalize a theoretical link between static equilibrium con-

ditions and a global interlocking property with a mathematical

proof.

• We propose a quantitative measure for structural stability of

assemblies and present a gradient-based method that optimizes

the geometry of blocks to maximize this measure.
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• We develop an interactive design tool that allows a real-time

preview and efficient exploration of a wide range of design pa-

rameters of TI assemblies.

Overview. The rest of the paper is organized as follows: We first

discuss related work in Section 2. Section 3 reviews the mathe-

matical formulation of static equilibrium analysis and our global

interlocking test, and establishes a formal connection between them.

Section 4 introduces a stability measure that can be interpreted as a

structural condition in-between single-load equilibrium and global

interlocking. Section 5 introduces a parametric model for TI assem-

blies that facilitates a constructive approach for design exploration.

Section 6 presents a gradient-based optimization to improve the

structural stability of an assembly with respect to the measure. In

Section 7 we show and discuss a variety of TI assemblies designed

by our approach. We conclude with a discussion of limitations of

our approach and identify opportunities for future research.

2 RELATED WORK

Our research is situated at the interface of computer graphics, struc-

tural engineering, and architectural design, and we discuss the most

related previous work in these fields below. Specifically, we focus on

computational methods for interlocking assemblies, self-supporting

structures, structural optimization, and TI assemblies.

Interlocking Assemblies. In an interlocking assembly, there is only

one movable part, called the key, while all other parts as well as
any subset of parts are immobilized relative to one another by their

geometric arrangement [Song et al. 2012]. Starting from the key,

the assembly can be gradually disassembled into individual parts

by following specific orders.

Several computational methods have been developed to construct

interlocking assemblies for different applications, including puz-

zles [Song et al. 2012; Tang et al. 2019; Xin et al. 2011], 3D printed ob-

jects [Song et al. 2015; Yao et al. 2017a], laser-cut polyhedrons [Song

et al. 2016], and furniture [Fu et al. 2015; Song et al. 2017]. Zhang

and Balkcom [2016] explored a small set of reusable voxel-like inter-

locking blocks for building 3D structures, while Wang et al. [2018]

developed a unified framework to design interlocking assemblies of

different forms by leveraging a graph-based representation.

The above works achieve the challenging goal of making an

assembly interlocking by constructing parts with irregular shape or

integral joints that closely constrain the relative inter-part motion.

In contrast, our TI assemblies are composed of simple convex blocks

and a boundary frame that holds the entire structure. This makes it

difficult to obtain TI assemblies that are globally interlocking, since

planar contacts between the convex blocks have relatively weak

capability to restrict inter-block movement.

Self-supporting Structures. A self-supporting structure is an ar-

rangement of blocks without external supports that is in static

equilibrium with gravity-induced compression forces holding all

the blocks in place. According to the safety theorem [Heyman 1966],

a structure is self-supporting if there exists a thrust surface con-

tained within the structure that forms a compressive membrane

resisting the load applied to the structure. Several papers proposed

Fig. 5. Example planar TI assemblies described in [Dyskin et al. 2003a]

composed of (a) tetrahedrons, (b) cubes, and (c) octahedrons.

computational design methods for freeform self-supporting sur-

faces [de Goes et al. 2013; Liu et al. 2013; Miki et al. 2015; Tang

et al. 2014; Vouga et al. 2012]. From these, self-supporting structures

can be generated by thickening the surface and partitioning it into

multiple blocks [Panozzo et al. 2013; Rippmann et al. 2016].

Different from the continuous concept of self-supporting surfaces,

the design of TI assemblies is discrete in nature, since the stability

of the assembly directly relies on the blocks’ geometry and their

mutual arrangement, rather than on specific properties of the un-

derlying design surface. As we show in this paper, TI assemblies

can be in static equilibrium for a cone of directions and even be-

come globally interlocking for certain geometries, without relying

on friction between the blocks. They can also approximate surfaces

that are not self-supporting; see Section 7.

Stability Analysis and Structural Optimization. The equilibrium

method [Shin et al. 2016; Whiting et al. 2009; Yao et al. 2017b] is

the current state of the art for stability analysis of 3D assemblies

in graphics and architecture. This approach assumes rigid compo-

nent parts and focuses on the balance of the external forces acting

on each part. Whiting and colleagues [2009] integrated the equi-

librium method with procedural modeling to design structurally

sound masonry, and later extended the approach with a gradient

descent optimization [Whiting et al. 2012]. The stability of masonry

structures under lateral acceleration also can be analyzed based on

static equilibrium [Ochsendorf 2002; Zessin 2012], which can be

simulated with a tilt analysis that rotates

the ground plane of the structure to apply

both a horizontal and vertical accelera-

tion to the structure; see the inset. For a

given rotation axis, the critical tilt angle

ϕ gives the minimum value of lateral ac-

celeration to cause the structure to collapse, providing a measure

of the structure’s lateral stability [Shin et al. 2016; Yao et al. 2017b].

We generalize this measure by considering all possible azimuthal

tilt directions and develop a structural optimization method that

improves the stability of TI assemblies with respect to this measure

by varying the the blocks’ geometry.

Topological Interlocking Assemblies. The principle of TI assem-

blies was discovered during the Renaissance when French architect

Joseph Abeille realized a flat vault with truncated tetrahedrons that

can support itself [Brocato and Mondardini 2012; Vella and Kotnik

2016]. In 1984, the same principle was used by Glickman [1984] for

developing a new paving system. It was later found that a planar TI

assembly can be constructed from all platonic bodies [Dyskin et al.

2003a]; see Figure 5 for some examples.
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Several other works in material science study the design of new

TI blocks for planar structures. Dyskin et al. [2013] proposed a

method to construct the shape of convex TI elements from a tiling

of the middle plane. Weizmann et al. [2016; 2017] explored dif-

ferent 2D tessellations (regular, semi-regular and non-regular tes-

sellations) to discover new TI blocks for building floors. Besides

convex polyhedra, elements with curved contact surfaces can also

form planar TI assemblies [Dyskin et al. 2003b; Javan et al. 2016];

please refer to [Dyskin et al. 2019] for a thorough overview. Physi-

cal experiments conducted on these TI assemblies show that they

possess interesting and unusual mechanical properties, including

high strength and toughness [Mirkhalaf et al. 2018], damage con-

finement [Siegmund et al. 2016], and avoiding failure under high

amplitude vibrations [Schaare et al. 2009].

Motivated by the intriguing properties of planar TI assemblies,

researchers in architecture studied the design of freeform 3D TI

assemblies [Fallacara et al. 2019]. Tessmann [2012] presented a cat-

alogue of parametric elements that can form an architectural TI

structure. Weizmann et al. [2016] designed TI assemblies with curvi-

linear shape by projecting a 2D tessellation onto a curved surface

and constructing the TI blocks following the surface curvature. Be-

jarano and Hoffmann [2019] proposed a constructive approach to

generate 3D TI assemblies that maintain alignment of the blocks,

focusing purely on the geometric design without considering fab-

rication and assembly. Although several experimental prototypes

have been shown in some of the above works, no analysis or opti-

mization of the structural behavior is given, nor is the concept of

global interlocking systematically studied.

Our work quantifies, for the first time, the structural stability of

TI assemblies from a geometric perspective, formulates the design

of structurally stable freeform TI assemblies as a geometric opti-

mization over a parametric model of the assembly, and presents an

interactive tool that allows users to control various design parame-

ters and to optimize the assembly for improving the stability.

3 ASSEMBLY STABILITY ANALYSIS

We study TI assemblies with convex rigid blocks that can exhibit

two types of contacts, face-face and edge-edge contacts as illustrated

in Figure 6. We represent a TI assembly with n component parts as

P = {Pi }, where Pi (1 ≤ i < n) is a block and Pn is the boundary

frame that defines the global peripheral constraint. In this section,

we first present the mathematical formulation for identifying two

structurally stable states of TI assemblies, global interlocking and
static equilibrium, and then make a formal connection between these

two states with a mathematical proof.

3.1 Global Interlocking Test

To test global interlocking of a given 3D assembly, we need to

test immobilization (or mobility) of each part and each part group.

Existing works assume that translational motions are sufficient

for disassembly, and that rotational part motions are generally not

required. These methods focus on 3D assemblies with orthogonal

parts connection [Song et al. 2012; Xin et al. 2011] or with integral

joints that only allow translational motion of parts [Fu et al. 2015;

Wang et al. 2018; Yao et al. 2017a]. As a consequence, parts or

Fig. 6. Two types of contacts in TI assemblies: (a) face-face and (b) edge-edge

contacts. The contact region between the two blocks (with cyan frame) is

colored in red while the discretized interaction force at each contact vertex

is shown as a purple vector.

part groups that are movable along a finite number of translational

directions can be identified either with exhaustive search [Song et al.

2012] or a more efficient graph-based approach [Wang et al. 2018].

In our TI assemblies, however, adjacent blocks have only a single

planar contact (i.e., no complex joint); see Figure 6. In such assem-

blies, it is possible that parts (or part groups) can be taken out from

the assembly with rotation(s) but not translation(s); see the inset for

an example, which is reproduced from [Wilson and Matsui 1992].

It is therefore essential to consider both

translation and rotation of each individual

part and each part group when testing for

global interlocking, which renders existing

approaches inapplicable. To address this

challenge, we propose a general algorithm

to test global interlocking based on solving the well-known non-

penetration linear inequalities in a rigid body system [Kaufman et al.

2008].

For a TI assembly P with n component parts andm contacts, we

denote the polygonal contact between Pi and Pj as Cl (l ∈ [1,m]),
vertices of Cl as {ck } where 1 ≤ k ≤ vl (vl = |{ck }|), and normal

of Cl as nl . We enforce that nl always points towards the part with
the larger index. To simplify notation, we assume i < j and thus nl
always points towards Pj ; see Figure 7-a.
We model both types of contacts in TI assemblies (see Figure 6)

as a set of point-plane contact constraints:

• A face-face contact constraint is modeled as a set of point-plane

constraints at the vertices of the (convex) contact polygon; see

Figure 6-a.

• An edge-edge contact constraint is modeled as a point-plane con-

straint between the contact point and the plane containing the

two edges, whose normal is denoted as nl also; see Figure 6-b.

Consider that each rigid part Pi can translate and rotate freely

in 3D space. We denote the linear velocity of Pi as ti , the angular
velocity of Pi as ωi , and the local motion of Pi as a 6D spatial

vector Yi = [tTi ,ω
T
i ]

T
; see Figure 7-a. For an arbitrary vertex ck

(abbreviated as c in the following equations) on the contact Cl
between Pi and Pj , Yi and Yj will cause c to undergo an infinitesimal

motion together with Pi and Pj respectively:

vci = ti +ωi × rci (1)

vcj = tj +ω j × rcj (2)
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Fig. 7. Two parts Pi and Pj have a planar contact, where c is a point on the

contact interface and rci is a vector from Pi ’s centroid to c (analogously for

rcj ). (a) Pi and Pj should not collide with each other at the contact during

their movement, e.g., translation ti and rotation ωi of Pi . (b) Each block Pi
is in equilibrium if there exists a system of interaction forces (e.g., −nl f c )
that balance the external force gi and torque τ i acting on it.

During the parts movement, the constraint is to avoid collision at

their contacts. Since our interlocking test considers only infinitesi-

mal motions of each block, we assume that the contact points remain

fixed during the test. Hence, the collision-free constraint between

Pi and Pj at contact point c can be modeled as:

(vcj − v
c
i ) · nl ≥ 0 (3)

By substituting Equations 1&2 in Equation 3, we obtain:[
−nTl −(rci × nl )

T nTl (rcj × nl )
T
] [Yi

Yj

]
≥ 0 (4)

Equation 4 describes the constraint of a point-plane contact between

Pi and Pj . By stacking the point-plane constraint in Equation 4 for

each vertex of each contact in the TI assembly P, we obtain a system

of linear inequalities:

Bin · Y ≥ 0 s.t. Y , 0 (5)

whereY is the generalized velocity of the rigid body system {Pi }, and
Bin is the matrix of coefficients for the non-penetration constraints

among the blocks in the system (see the supplementary material).

To avoid the case that the assembly moves as a whole, we fix an

arbitrary part, usually the boundary frame Pn , by setting Yn = 0.
We consider the assembly P as globally interlocking, if the system

in Equation 5 does not have any non-zero solution.
1
We solve the

system by formulating a linear program following [Wang et al. 2018];

please refer to the supplementary material for details.

Our formulation of the global interlocking test allows for a very

efficient implementation. For example, it took 0.98 seconds to per-

form the test on the assembly of Figure 1 composed of 62 parts.

More importantly, our interlocking test is more general than pre-

vious methods [Song et al. 2012; Wang et al. 2018]. It can test for

global interlocking of arbitrary 3D assemblies with rigid parts where

the part contacts can be modeled as a set of point-plane contact

constraints [Wilson and Matsui 1992], no matter whether the parts

are orthogonally or non-orthogonally connected, or what kinds of

joints are used to connect the parts.

1
To make the TI structure disassemblable, we will eventually break the boundary frame

into two subparts, among which one subpart will form the key that will be taken out

from the structure first.

3.2 Static Equilibrium Analysis

Lets us now consider how to analyze an assembly for static equilib-

rium. Let gi be the external force and τ i the torque acting on part

Pi of an assembly P; see Figure 7-b. LetWi = [gTi ,τ
T
i ]

T
. Given all

the external forces and torques W = [WT
1
, . . . ,WT

n ]
T
, static equi-

librium analysis computes the interaction forces between the parts

and determines whether there exists a network of interaction forces

that lead to a static equilibrium state.

We perform the equilibrium analysis following themethod in [Whit-

ing et al. 2009] with two main modifications to make it suitable for

TI assemblies:

• We ignore friction among the parts to avoid any dependence on

physical material properties. Friction forces can be unreliable in

practice, e.g., due to fabrication inaccuracies or material wear. As

a consequence, our analysis is more conservative and only relies

on the geometry of assembly parts.

• Blocks in TI assemblies have two types of contacts, i.e., face-face

and edge-edge contacts rather than face-face contacts only [Whit-

ing et al. 2009]; see Figure 6.

To discretize contact forces, we assign a 3D force to each vertex

of each contact, and assume a linear force distribution across the

contact polygon (for the face-face contacts only); see again Figure 6.

Since we ignore friction, the compressive contact force is always

perpendicular to the contact interface. For a vertex c in Cl between
Pi and Pj (i < j), we denote the contact force size as f cl (f cl ≥ 0).

Hence, the contact force applied on Pi is −nl f cl , and consequently

nl f cl on Pj . Static equilibrium conditions require that the net force

and the net torque for each block Pi are equal to zero:∑
l ∈L(i)

vl∑
k=1

−nl f
ck
l = −gi (6)

∑
l ∈L(i)

vl∑
k=1

−(rcki × nl ) f
ck
l = −τ i (7)

where L(i) enumerates the contact IDs between Pi and its neighbor-

ing parts.

Combining the equilibrium constraints in Equation 6 and 7 for

each block gives a linear system of equations:

Aeq · F = −W s.t. F ≥ 0 (8)

where F represents the unknown interaction forces in the assembly

(i.e., contact force sizes at each vertex of each contactCl ), Aeq is the

matrix of coefficients for the equilibrium equations [Whiting et al.

2009], andW represents the external forces and torques acting on

the system, usually the weight of each part only without any torque.

We solve Equation 8 following the approach in [Whiting et al. 2009].

In our implementation, it took 0.22 seconds to perform equilibrium

analysis (under gravity) for the TI assembly in Figure 1.

3.3 Connection between Interlocking and Equilibrium

Interlocking and equilibrium describe two specific structural states

of 3D assemblies. We make a formal connection between interlock-

ing and equilibrium as follows:
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An interlocking assembly is an assembly that is in equi-
librium under arbitrary external forces and torques.

This connection relies on the fact that the coefficient matrix Bin
in Equation 5 and Aeq in Equation 8 are transposed to each other,

according to the well-known close relation between velocity kine-

matics and statics [Davidson and Hunt 2004].

The above statement can be formally proved based on a solvability

theorem for a finite system of linear inequalities, in particular Farkas’

lemma [Farkas 1902]:

Lemma 3.1 (Farkas’ Lemma). Let A ∈ Rn×m and b ∈ Rn . Then
the following two statements are equivalent:

(1) There exists an x ∈ Rm such that Ax = b and x ≥ 0.
(2) There does not exist a y ∈ Rn such that AT y ≥ 0 and bT y < 0.

Our observation is that the mathematical formulations of equilib-

rium and interlocking in Subsection 3.2 and 3.1 correspond to the

first and second statement in Farkas’ lemma, respectively. In partic-

ular, A = Aeq, x = F, and b = −W relate statement 1 to Equation 8

while AT = Bin and y = Y relate statement 2 to Equation 5.

By assuming that b = −W can be an arbitrary vector (i.e., arbi-

trary external forces and torques), we can see that the condition

of bT y < 0 in statement 2 is equivalent to y , 0. Statement 2 then

becomes exactly consistent with the formulation of interlocking in

Equation 5 and the formal connection between interlocking and

equilibrium is proved.

Discussion. Our assembly stability analysis is related to struc-

tural rigidity theory [Thorpe and Duxbury 2002], whose typical

application is to design tensegrity structures [Pietroni et al. 2017].

In this theory, structures are formed by collections of rigid compo-

nents such as straight rods, with pairs of components connected

by flexible linkages such as cables (in contrast, our parts are con-

nected purely by their planar contacts). A structure is rigid if there

is no continuous motion of the structure that preserves the shape

of its rigid components and the pattern of their connections at the

linkages. Similar to the link that we made between interlocking

and equilibrium, there are two equivalent concepts of rigidity: 1)

infinitesimal rigidity in terms of infinitesimal displacements; and 2)

static rigidity in terms of forces applied on the structure.

4 ASSEMBLY STABILITY MEASURE

Our analysis shows that static equilibrium means that the assembly

is stable under a constant external force and torque configuration

W, while global interlocking indicates that the structure is stable

under an arbitrary W. In practice, ensuring static equilibrium for a

single W might be insufficient since the assembly could be exposed

to different forces (e.g., live loads). On the other hand, a global

interlocking requirement might impose too strict constraints on

the assembly’s geometry, as real assemblies usually do not have to

experience arbitrary external forces.

This motivates us to consider stability conditions that are more

strict than single-load equilibrium, but not as restrictive as global

interlocking; see Figure 8. Our idea for quantifying these stability

Fig. 8. Spectrum of assembly stability in which the stability increases from

left to right, i.e., non-equilibrium (under single load, e.g., gravity), equilibrium
but not interlocking that can be quantified by our stability measure Φ, and
global interlocking. The gap between our stability measure and interlocking

in the spectrum represents stability conditions where an assembly is in

equilibrium under all possible gravity directions but not an arbitrary W.

conditions is based on the set of external force and torque config-

urations W ∈ R6n under which the assembly P is in equilibrium,

denoted as the feasible set G(P), which has the following properties:

(i) If W ∈ G, then λW ∈ G (λ ≥ 0), since we can multiply both

sides of Equation 8 with λ.

(ii) If W1 ∈ G and W2 ∈ G, then λW1 + (1 − λ)W2 ∈ G (λ ≥ 0)

due to the linearity of Equation 8.

Hence, G(P) forms a convex cone in R6n . The case where G(P) =
R6n indicates that the assembly is global interlocking.

Similar to [Whiting et al. 2009], we consider a specific class of

external force and torque configurations for the analysis and design

of TI assemblies, in which each part Pi experiences a force gi that
passes through Pi ’s center of mass (i.e., τ i = 0) and has a constant

size (i.e., ∥gi ∥ equals to Pi ’s weight). Moreover, we assume that

all gi have the same direction, denoted by the unit vector d. This
assumption is motivated by the tilt analysis for measuring lateral

stability of masonry structures in architecture [Ochsendorf 2002;

Zessin 2012]; see again the inset in Section 2. By this, we reduce the

degrees of freedom of W from 6n to 2 (i.e., a normalized vector d).
We represent each normalized force direction d in spherical coor-

dinates as d(θ ,ϕ), where θ ∈ [0◦, 360◦) is the azimuthal angle and

ϕ ∈ [0◦, 180◦] is the polar angle (relative to−z, the gravity direction).
To compute G(P) we need to find all d(θ ,ϕ) ∈ G(P). Here, we check
if d(θ ,ϕ) ∈ G(P) by testing whether the assembly P is in equilibrium

under external forces with direction d(θ ,ϕ) by solving Equation 8.

Assuming that an assembly P is in equilibrium under gravity (i.e.,

Fig. 9. (a) A TI assembly P and (b) its feasible cone G(P). (c) We visualize

G(P) as the feasible section S(P) by intersecting it with the cyan plane

(z = −1) in (b). The external force direction corresponding to our stability

measure Φ is shown as a purple vector in (b) and a purple dot in (c). Note

that the purple dot is the point of tangency between the feasible section

S(P) and its largest inner circle (in red) centered at the origin.
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Fig. 10. Overview of our approach. (a) Input reference surface and 2D tessellation. (b) 3D surface tessellation with augmented vectors. (c) Initial TI assembly. (d)

Stability analysis computes the cone of stable directions. (e) Structural optimization improves stability; i.e., the cone becomes larger. (f) 3D printed prototype.

dд = (0, 0,−1) ∈ G(P)), we approximate G(P) by uniformly sam-

pling θ and finding the critical ϕ for each sampled θ using binary

search, thanks to the convexity of G. Figure 9 shows an example

feasible cone G(P) computed using our approach, as well as its cross

section with plane z = −1, called the feasible section S(P).
Given the feasible cone G(P), we define our stability measure as:

Φ(P) = min{ ϕ | d(θ ,ϕ) ∈ ∂G(P) } (9)

where ∂G(P) denotes boundary of the feasible cone G(P). Our mea-

sure is actually the minimum critical tilt angle among all possible

azimuthal tilt axes, which can be considered as a generalization of

the critical tilt angle for a fixed axis [Zessin 2012]; see Figure 9-b&c.

Figure 8 shows how our stability measure is embedded in the whole

stability spectrum, where Φ = 0
◦, 90◦, 180◦ highlight some special

stability states. Specifically, the stability states corresponding to

Φ = 90
◦
and Φ = 180

◦
are adjacent in the spectrum since the fea-

sible cone G(P) cannot be in-between a half sphere and a whole

sphere due to the property of convexity.

5 COMPUTATIONAL DESIGN OF TI ASSEMBLIES

Given a reference surface S as input, our goal is to design a struc-

turally stable TI assembly P that closely conforms to S. To make this

problem tractable, we first define a parametric model that facilitates

a constructive approach for design exploration of TI assemblies. We

then show in Section 6 how to optimize for the structural stability

of a designed assembly. Figure 10 gives a high-level overview of our

computational design pipeline.

5.1 Parametric Model

Dyskin et al. [2013] proposed a parametric model for planar TI

assemblies based on a 2D polygonal tessellation T in which the

edges are augmented with normalized vectors. We extend this model

to parameterize 3D free-form TI assemblies using a 3D surface

tessellation T with augmented vectors.

Parameter space. Specifically, we represent T as a polygon mesh

using a half-edge data structure, where each face is denoted as Ti
and each pair of half-edges shared by Ti and Tj is denoted as ei j
on Ti and eji on Tj . The 3D directional vector defined by each half-

edge ei j is denoted as ei j with ∥ei j ∥ = 1. We assign to each Ti a
normal vectorNi defined by the least-squares plane of the polygon’s

vertices. We further augment each half-edge ei j with a 3D vector

ni j where ∥ni j ∥ = 1 and ni j ⊥ ei j ; see Figure 11-a. Each half-edge

ei j together with the augmented vector ni j defines a 3D plane.

Fig. 11. A TI assembly is created from a 3D surface tessellation and a set

of augmented vectors (a) by intersecting the half-spaces defined by each

tessellation polygon (b). Each vertex of the tessellation corresponds to the

joining point of neighboring blocks; see the red circle (c). Blocks can be

additionally trimmed with surface offset planes (d). Zooming views of the

faces/blocks highlighted with green dots are shown on the top row.

Block geometry. We intersect all 3D planes associated with the

half-edges of each Ti to construct the (convex) geometry of the

corresponding block Pi in P; see Figure 11-b. Sometimes, the inter-

sected block geometry could be infinite (or simply too bulky), so

we optionally trim the blocks using offset planes with normal ±Ni ;

see Figure 11-d. Blocks corresponding to facesTi in T that contain a

boundary edge will be merged to form the boundary frame, shown

in darker shading in the figures. The resulting boundary frame can

also be clamped to a smooth outline; see for example Figure 15.

Valid assemblies. For the above construction method to produce

a geometrically and structurally valid assembly, we restrict T to

only contain convex faces that are not triangles as these would

produce pyramid-shaped elements that cannot properly "interlock"

with other blocks. We require ni j = −nji to ensure a proper planar

contact face between adjacent blocks. We further require that each

face Ti is in the half-space (v − vi j ) · ni j ≤ 0 defined by each

augmented half-edge of Ti , where v is an arbitrary point and vi j
is a point on the edge ei j . This will ensure that the intersected

geometry of Pi defined by the 3D planes {ei j ,ni j } is not empty and

encompasses the face Ti ; see the zooming views in Figure 11-b&c.

5.2 Interactive Design

To initialize a design, the user selects a tessellation pattern, adapts

global alignment and scaling, and assigns initial augmented vectors.
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Fig. 12. (a) Initialize ni j (in purple), where the red vector is (Ni +Nj )/∥Ni +
Nj ∥. (b) Determine orientations of ni j , where + (−) indicates clockwise

(counterclockwise) rotation around ei j . (c) Compute range for each ni j (vi-
sualized as green sectors). (d) Example {ni j } generated with user-specified

α = 35
◦
. (e) Two resulting blocks.

An automatic procedure that checks the above geometric require-

ments then provides immediate feedback on the assembly’s validity.

Specifically, our computational approach proceeds as follows:

Initialize tessellation. Given a reference surface S, there are many

different ways to create a surface tessellation T, including remesh-

ing, surface Voronoi diagrams, or parameterization approaches. Our

tool mainly uses conformal maps to lift a planar tessellation onto

the surface; see Figure 15 for examples. The user can interactively

adjust the location, orientation, and scale of the tessellation. We

further optimize the vertex positions using a projection-based opti-

mization [Bouaziz et al. 2012; Deuss et al. 2015] to improve planarity

and regularity of the 3D polygons and to ensure proper contacts

among blocks by avoiding small dihedral angles. Please refer to the

supplementary material for details about this optimization.

Assign vectors {ni j }. For each half-edge ei j in the tessellation T,
we initialize ni j as ei j ×(Ni +Nj ) after normalization (see Figure 12-

a). We then rotate ni j around ei j by an angle xi jαi j , where each αi j
is initialized as a user-specified rotation angle α and xi j ∈ {−1, 1}
specifies rotational direction (i.e., clockwise or counterclockwise).

The goal here is to obtain alternating directions for adjacent edges of

a polygon to improve the interlocking capabilities of blocks [Dyskin

et al. 2019]. For this purpose, we use a simple flood-fill algorithm that

starts with a random edge and traverses the half-edge data structure

to assign {xi j } that locally maximize adjacent sign alternations. If all

polygons have an even number of edges, this strategy can achieve

global alternation (see Figure 12-b), which cannot be guaranteed

in general, i.e., when the tessellation contains polygons with odd

number of edges.

Select rotation angle α . The global parameter α can be interac-

tively controlled by the user. For each edge we compute an allowable

range [αmin

i j ,α
max

i j ] that ensures a valid block geometry as defined

above and clamp the applied rotation accordingly. Figure 13 shows

3D tessellations generated with different values of α . Due to the

efficiency of this construction approach, the user can interactively

create and preview TI assemblies while adjusting the design param-

eters, i.e. the 2D tessellation and its mapping onto the reference

Fig. 13. TI assemblies generated with α equals to (a) 0
◦
, (b) 25

◦
, (c) 45

◦
, and

65
◦
. From top to bottom: 3D surface tessellation with augmented vectors,

TI assemblies with originally constructed blocks, and with trimmed blocks.

Note that the originally constructed blocks in the TI assembly with α = 0
◦

have infinite geometry and thus are not shown.

surface, the rotation angle α , and the thickness of the blocks. Please
refer to the supplementary video for an interactive demo.

6 STRUCTURAL OPTIMIZATION OF TI ASSEMBLIES

The interactive design stage generates a TI assembly P as input to

the subsequent stages of our computational pipeline (Figure 10-d&e).

If our analysis algorithm of Section 3.1 reveals that P is globally

interlocking, no further optimization is required. Otherwise, we run

a structural optimization that distinguishes several cases; see Algo-

rithm 1. To make these computations tractable, we only optimize

the augmented vectors {ni j } while fixing the tessellation T.
In detail, if the initial design is not in static equilibrium under grav-

ity, we first run an optimization to find a stable state (Section 6.2).

If a stable configuration is found, we evaluate its stability score as

discussed in Section 4. If Φ = 180
◦
, then no further optimization is

required. If Φ = 90
◦
, then finding a static equilibrium for any force

direction in the upper hemisphere without breaking equilibrium for

the directions in the lower hemisphere will result in Φ = 180
◦
due to

convexity of the feasible set G(P). We therefore simply run our opti-

mization for all the six axial directions. Finally, if Φ ∈ [0◦, 90◦), we
optimize stability for an incrementally growing cone of directions

(Section 6.1).

6.1 Compute Target Force Directions

Given a TI assembly Pwith stability measureΦ(P) ∈ [0◦, 90◦), the ra-
dius of the largest inner circle (centered at the origin) of the feasible

section S(P) is tan(Φ); see again Figure 9(c). To improve the stability

measure from Φ to Φtagt = ωΦ (ω > 1), we need to modify the

feasible section and enlarge the radius of its largest inner circle from

tan(Φ) to tan(Φtagt). To this end, we approximate the target feasible

section Stagt(P) with a convex polygon that completely contains the

target circle with radius tan(Φtagt). The vertices {vk }, 1 ≤ k ≤ K ,
of the polygon should be as close as possible to the current feasi-

ble section S(P) to require minimal change to the geometry of the
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Algorithm 1Algorithm of structural optimization on a TI assembly

P to improve its stability.

1: function StructuralOptimization( P )

2: S ← StabilityAnalysis( P ) ▷ See Section 3

3: if S = Interlocking then
4: return

5: else if S = NonEquilibrium then
6: if OptimizeAssembly( P, −z ) , Success then
7: return

8: Φ← ComputeStabilityMeasure( P ) ▷ See Section 4

9: if Φ = 180
◦ then

10: return
11: else if Φ = 90

◦ then
12: if OptimizeAssembly( P, {±x,±y,±z} ), Success then
13: return
14: else
15: ω ← ωc ▷ ωc = 1.2 in our experiments

16: while ω > ωt do ▷ ωt = 1.01 in our experiments

17: Φtagt ← ω Φ

18: {dk } ← ComputeTargetDirections( Φtagt, P )

19: if OptimizeAssembly( P, {dk } ) = Success then
20: ω ← ωc
21: P← P∗ ▷ P∗ is the optimized assembly

22: else
23: ω ← δ ω ▷ δ = 0.95 in our experiments

24: return

blocks. In our experiments, we choose K = 6 as a trade-off between

computation efficiency and approximation accuracy.

We initialize the vertices as a regular K-sided polygon that en-

closes the target circle and optimize their positions to minimize their

distances to the current feasible section S(P); see supplementary

material for details about the optimization. Figure 14-c shows an ex-

ample target feasible section Stagt(P) approximated with a hexagon

using our approach, together with the current and target inner cir-

cles. Each vertex of the target feasible section (i.e., the hexagon)

corresponds to a 3D force direction that is usually outside of the

current feasible cone G(P); see the purple lines in Figure 14-d. We

denote these target force directions corresponding to {vk } as {dk }.

6.2 Optimize TI Assembly

Given the set of target force directions {dk }, the goal of our opti-
mization is to include each direction dk in the feasible coneG(P∗) of
the optimized assembly P∗. If this optimization succeeds, we enlarge

Φtagt, recompute the target force directions {dk }, and repeat the

optimization. Otherwise, we have to lower the optimization goal

by decreasing Φtagt, and repeat the optimization. Our optimization

terminates when the stability measure Φ cannot be improved any

more; see again Algorithm 1.

Fig. 14. An example TI assembly before (top) and after (bottom) one step of

our optimization. (b&f) Histograms of vector rotation angles {αi j }, where
each αi j = α (i.e., 20

◦
) before the optimization. (c&d) Target force directions

(in purple) in the feasible section and cone, where current and target circles

are colored in red. (g&h) The optimization goal is achieved by including the

target force directions in the optimized feasible section and cone.

Problem Formulation. Our optimization can be formulated as:

{α∗i j } = argmin

{αi j }

K∑
k=1

E( P, dk ) (10)

s.t. Area( Cl ) ≥ A
thres
, ∀ contact Cl

max(αmin,αmin

i j ) ≤ αi j ≤ min(αmax,αmax

i j )

where E(P, dk ) quantifies the assembly’s infeasibility to be in equi-

librium under external forces along direction dk ; Athres
is the mini-

mum allowable contact size among the blocks (for face-face contacts

only); and [αmin,αmax] is the user-specified range for every αi j to

preserve the assembly appearance while [αmin

i j ,α
max

i j ] is the range

for constructing blocks with valid geometry (see again Figure 12-c).

We compute the energy E(P, dk ) following the approach in [Whit-

ing et al. 2012], where the key idea is to allow tension forces to act

as “glue” at block interfaces to hold the assembly together, to penal-

ize the tension forces, and to use their magnitude to quantify the

infeasibility to be in static equilibrium.

In detail, we first express each contact force f cl at vertex c of

contact Cl in terms of compression and tension forces using the

difference of two non-negative variables:

f cl = f c+l − f c−l f c+l , f
c−
l ≥ 0 (11)

where f c+l and f c−l are the positive and negative parts of f cl , rep-
resenting the compression and tension forces, respectively. Our

objective is to minimize tension forces between the blocks in the

assembly P under external forces along direction dk , subject to the

equilibrium constraint:

E( P, dk ) = min

{fk }
fTk Hfk (12)

s.t. Aeq · Fk =Wk

where fk is the vector of contact forces represented as { f c+l , f
c−
l },

H is a diagonal weighting matrix for the tension (large weights) and
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Fig. 15. A variety of patterns supported by our tool for designing TI assemblies. The surface tessellations can be generated by lifting 2D tessellations (see the

boxed images) using conformal maps (the left four columns), manually designed by users (top two patterns in the rightmost column), or created as a surface

Voronoi diagram (bottom pattern in the rightmost column).

compression (small weights) forces, Wk is the vector of external

forces acting on each block along direction dk , and Fk is the vector

of contact forces.

Optimization Solver. Our optimization in Equation 10 is very simi-

lar to the equilibrium optimization of 3D masonry structures [Whit-

ing et al. 2012]. Hence, we solve our optimization following the

gradient-based approach in [Whiting et al. 2012] with several im-

portant differences:

• Our optimization aims to achieve static equilibrium under forces

along each target force direction in {dk } respectively, rather than
along a single gravitational direction.

• Our assemblies do not rely on friction, so we eliminate the friction

constraints in the equilibrium condition in Equation 12.

• We compute the gradient of the energy E(P, dk ) with respect

to the vector rotation angles {αi j }, while [Whiting et al. 2012]

computes it with respect to the positions of the block vertices;

see the supplementary material for derivations of our gradients.

Figure 14 shows example TI assemblies before and after our optimiza-

tion for a set of fixed target force directions {dk }. The histograms

of the vector rotation angles {αi j } show that our optimization adap-

tively adjusts these angles to make the assembly in static equilibrium

for each of these force directions.

Fig. 16. Our method allows creating stable TI assemblies, indicated by the

green feasible cones, even for design surfaces that are not self-supporting.

7 RESULTS AND DISCUSSION

We implemented our tool in C++ andOpenGL, and employedMOSEK

[2019] and Knitro [2019] for solving our optimizations. We con-

ducted all experiments on an iMac with a 4.2GHz CPU and 32GB

memory. Our tool supports a variety of patterns as illustrated in

Figure 15. We tested our design and optimization pipeline on a wide

range of surfaces in Figure 17, e.g., Free Holes with high genus,

Flower with zero mean curvature (i.e., minimal surface), and Sur-

face Vouga with both positive and negative Gaussian curvature.

Figure 16 shows that our tool allows generating structurally stable

TI assemblies from non-self-supporting surfaces, i.e. with a flat part

or even an inverted bump on the top.

Table 1 summarizes the statistics of all the results presented in

the paper. The third to sixth columns list the total number of parts,
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Fig. 17. TI assemblies of various shapes and their corresponding feasible cones (except those that are globally interlocking). From left to right and then top to

bottom: Blob, Spindle, Flower, Torus, Hyperbolic, Peanut, Pentagon, Six, Buga Pavilion, Vase, Surface Vouga, and Free Holes.

Table 1. Statistics of the resulting TI assemblies in the paper.

the total number of contacts, and the number of contacts for each

specific type, respectively. As can be seen, face-face contacts are

dominant in all the results. The seventh to ninth columns show the

stability measure Φ before and after the optimization, and the inter-

locking test result on the assembly. In general, stability improves

Fig. 18. Tilt analysis experiments on the 3D printed Igloo to validate its

stability.

significantly; e.g., from non-equilibrium to Φ = 53.8◦ for Surface

Vouga, from Φ = 33.8◦ to global interlocking for Hyperbolic. One

interesting observation in our experiments is that TI assemblies con-

structed from a minimal surface are easy to be globally interlocking,

even without structural optimization, e.g., Roof in Figure 1 and

Flower in Figure 17. The tenth and eleventh columns show timing

statistics of the TI geometry initialization from given parameters

(in milliseconds) and the complete structural optimization on the

geometry (in minutes), respectively.

Fabricated Prototypes. We fabricated two TI assemblies designed

by our tool, Roof in Figure 1 and Igloo in Figure 10, using an

SLS 3D printer with PA 2200 polyamide material. To ensure assem-

blability of the structure, we break the boundary frame into two

separated components. We compute the assembly sequence based

on disassembly. Starting from one boundary component as the key,
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Fig. 19. Assembly sequence of (top) Roof and (bottom) Igloo, where the blocks and the boundary frame (in two components) are shown on the left. 3D

printed formworks are used to support incomplete structures during the assembly.

Fig. 20. Example shapes for which the optimization does not find an equi-

librium under gravity.

we iteratively identify blocks that can be taken out from the struc-

ture, until the remaining boundary component. Figure 19 shows

the assembly sequence of the two structures. Once all blocks are as-

sembled, we close the boundary frame by adding the key boundary

component, which is connected to its counterpart using integrated

magnets. Figure 1 and 18 show physical experiments, including the

tilt analysis, conducted on the two fabricated models, which validate

their stability under different gravity directions. In particular, Roof

in Figure 1 is stable under arbitrary orientations as predicted by its

global interlocking property. Please watch the supplementary video

for demos.

8 CONCLUSION

In this paper we studied how to approximate freeform design sur-

faces with structurally stable assemblies of convex rigid pieces.

When analyzing their interlocking behavior, we observed that si-

multaneous multi-part motions and part rotations need to be con-

sidered when formulating a general algorithm to test for global

interlocking. Our new formulation then led to the formalization of

a link between the geometric property of global interlocking and

force-based equilibrium conditions. This provided the key insight to

formulate a general stability metric that is suitable for optimization.

Our experiments show how this optimization allows creating struc-

turally stable assemblies of convex elements that can approximate

a wide variety of double-curved freeform surfaces.

However, not all input designs are suitable for our method. For

certain models, for example, closed surfaces or surfaces with a sig-

nificant concave cavity, our method does not find an equilibrium

under gravity; see Figure 20 for two examples. In addition, we make

a number of idealized assumptions. We model the boundary frame

as a single part yet break the frame into two subparts for fabrication

and assembly, which might affect prediction accuracy of our com-

putational method. We also assume rigidity and perfect accuracy

of the assembly blocks. For practical applications, questions related

to fabrication tolerances and their effect on the global assembly

are important, as accumulation of fabrication errors could lead to

structural failure of a supposedly stable assembly.

Our stability measure considers load-induced external forces act-

ing on the center of gravity of each block. As a consequence, our

optimization only aims for static equilibrium under all possible

gravity directions yet not under all possible force and torque config-

urations. This also means that we currently do not directly optimize

for globally interlocking assemblies (see also Figure 8). Formulating

a stability measure and corresponding optimization to support all

possible force and torque configurations would be an interesting

future work.

Our structural optimization adapts the rotation angles {αi j } of
the augmented vectors while keeping the surface tessellation fixed.

Extending the method to also optimize the tessellation is an in-

teresting research challenge. Another possible extension is to also

consider non-convex blocks or curved contact surfaces. Other in-

teresting future work is on finding optimal assembly sequences,

e.g. with respect to the required support structure, improving the

computational performance of the optimization, or analyzing and

optimizing structural stability under element failure. Finally, inter-

esting theoretical questions emerge. For example, what is the class

of surfaces for which a globally interlocking assembly with convex

blocks is possible? We expect minimal surfaces to be in this class,

but we do not yet have a proof of this conjecture.
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