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Fig. 1. Our computational framework optimizes cone joints for designing assemblable and stable structures with a variety of geometric forms: (a) planar, (b)

volumetric, (c) frame, and (d) shell structures.

We present a computational framework for modeling and optimizing com-

plex assemblies using cone joints. Cone joints are integral joints that gener-

alize traditional single-direction joints such as mortise and tenon joints to

support a general cone of directions for assembly. This additional motion

flexibility not just reduces the risk of deadlocking for complex joint arrange-

ments, but also simplifies the assembly process, in particular for automatic

assembly by robots. On the other hand, compared to planar contacts, cone

joints restrict relative part movement for improved structural stability. Cone

joints can be realized in the form of curved contacts between associated

parts, which have demonstrated good mechanical properties such as reduced

stress concentration. To find the best trade-off between assemblability and

stability, we propose an optimization approach that first determines the opti-

mal motion cone for each part contact and subsequently derives a geometric

realization of each joint to match this motion cone. We demonstrate that our

approach can optimize cone joints for assemblies with a variety of geometric

forms, and highlight several application examples.
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1 INTRODUCTION

An assembly is a collection of parts that are deliberately arranged

to have a specific functionality and/or form. The majority of man-

made objects are designed as assemblies to accomplish a certain

task (machines, vehicles), to make fabricating large objects feasible

or cheaper (buildings, furniture), or simply to entertain (puzzles,

toys). A necessary condition for an assembly to be practically used

is structural stability. To this end, adjacent parts in an assembly have

to be properly joined such that no unwanted relative part motions

will happen under external forces.

Parts in an assembly are typically joined by glue, nails, screws, or

some standard connectors. However, these joining methods do not

encourage disassembly and re-assembly, and sometimes harm the

external appearance of the assembly. With the advance of digital

fabrication techniques, integral joints are more and more widely

used for designing and making assemblies with intricate geometry.

Integral joints are implicitly defined as the portion of each indi-

vidual part that is in contact with adjacent parts. These joints can

simplify the assembly process significantly as a sequence of op-

erations to insert individual parts, without the need of installing

external connectors with tools [Fairham 2013].

Integral joints are typically designed in a way that two parts can

be separated by translating one part along a single direction, e.g.,

mortise and tenon joints and dovetail joints. We call these joints

single-direction joints; see Figure 2(a). Single-direction joints are

widely used in furniture, timber structures, and 3D printed assem-

blies due to their strong capacity to strengthen structural stability.

However, complex arrangements of single-direction joints could

lead to deadlocking, making the assembly physically unrealizable.

Moreover, these joints may complicate the assembly process as in-

serting a part precisely along a certain direction to fit the other

could be a challenging task, especially in robotic assembly.

On the other end of the spectrum are integral joints with planar

contacts (see Figure 2(b)), which are very common in unreinforced
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Fig. 2. Two parts joined in different ways using: (a) a single-direction joint,

(a) a planar contact, and cone joints with (c) a curved or (d) a piecewise-

planar contact (contacts are shown in purple). The four assemblies are all in

equilibrium under gravity yet the translational motion space of taking out

the green part varies (see cones on the top).

masonry structures [Panozzo et al. 2013; Whiting et al. 2009]. Advan-

tages of planar contacts include simple geometry, ease of fabrication,

avoidance of local stress concentration. Yet, these joints have the

weakest capacity to restrict relative part motion. Incomplete assem-

blies with planar contacts usually require additional supports for

being stable (i.e., in equilibrium) [Deuss et al. 2014].

In this paper we study integral joints that generalize single-

direction joints in terms of restricting relative part motion. We

focus on making use of these joints for designing structures that

are assemblable and stable. We call these joints cone joints since
they allow one part to be separated/inserted relative to the other by

translation along any direction within a motion cone. A cone joint

is a single-direction joint if its translational motion cone contains a

single direction. And a cone joint degenerates into a planar contact if

its translational motion cone becomes a half sphere. Cone joints are

typically realized in the form of curved or piecewise-planar contacts

between two parts (see Figure 2(c&d)), which have been demon-

strated to have good mechanical properties such as reduced stress

concentration in building structurally stable assemblies [Dyskin

et al. 2003; Javan et al. 2016]. Parts with cone joints can be easily

fabricated with 3D printing, CNC milling, and even hot-wire cutting

for large-scale objects [Duenser et al. 2020].

Although cone joints have been successfully used in stable planar

structures (e.g., brick-based flooring systems [Weizmann et al. 2017]),

assembly-based 3D printing [Araújo et al. 2019], and space-filling

blocks [Akleman et al. 2020], little is known about how the variation

in geometry of cone joints affects a structure’s assemblability and

stability, not to mention optimizing the geometry of cone joints

for these two design goals. In this paper, assemblability has a two-

fold meaning: 1) parts can be assembled into the final structure

without collision; and 2) each part can be inserted by translating

along any direction within a sufficiently large circular cone, aiming

to simplify the assembly process. Stability means a structure is in

equilibrium under known external forces such as gravity. To address

the challenge of modeling and optimizing complex assemblies with

cone joints, we make the following technical contributions:

• We establish a connection between the geometry of a joint and

its motion space based on convexity theory. We show that the

joint motion space is always convex and present a sampling-based

approach to compute the motion space of curved-contact joints.

• We present a motion-based method for static analysis of assem-

blies with cone joints, which is dual to existing force-based meth-

ods. The strength of this new method is to quantify structural

stability and assemblability coherently in motion space.

• We develop an optimization approach to construct cone joints for

designing structures that are assemblable and stable, assuming

the assembly sequence is given. Our framework iterates between

a kinematic design stage that determines the required motion

cone for each part contact and a geometric realization stage that

finds the geometry of each joint to match this motion cone.

In this paper, we model the geometry of cone joints using a

simple parametric model to demonstrate the core functionality of

our computational framework. Other parametric models can be

easily integrated into our framework since they affect only the

geometric realization stage, but not the motion space computation,

motion-based static analysis, and kinematic design stage.

2 RELATED WORK

Static analysis and structural optimization. Static analysis iden-
tifies whether an assembly is in a static equilibrium state under

external forces. The equilibrium methods [Shin et al. 2016; Whiting

et al. 2009; Yao et al. 2017b] are the current state of the art for static

analysis of assemblies with rigid parts. An assembly is considered to

be in equilibrium if a network of interaction forces between the parts

can be found to balance external forces acting on each part. The equi-

librium method has been integrated for designing assemblies that

are stable under gravity, including masonry buildings [Block and

Ochsendorf 2007; Whiting et al. 2009, 2012], LEGO sculptures [Luo

et al. 2015], and furniture with decorative joints [Yao et al. 2017b],

as well as for finding assembly plans that require fewer supports for

constructing self-supporting structures [Deuss et al. 2014]. Recently,

Wang et al. [2019] optimized the geometry of an assembly with

planar contacts to achieve a static equilibrium under not just gravity

but also lateral forces.

We show that the straightforward extension of the equilibrium

method to cone joints leads to a significant increase of computational

complexity. Inspired by static-kinematic duality, we propose an

alternative motion-based equilibrium method for static analysis,

enabling our two-stage approach for designing assemblies with

cone joints; see Section 6.

Interlocking assemblies. In an interlocking assembly, parts are

immobilized relative to one another by their geometric arrangement,

optionally with the aid of friction. Single-direction joints are widely

used for designing and making interlocking assemblies, due to their

strong capacity to restrict relative part motion. Typical examples

include 3D puzzles [Lo et al. 2009], laser-cut sculptures [Cignoni

et al. 2014; Hildebrand et al. 2012; Schwartzburg and Pauly 2013],

3D-printable object assemblies [Luo et al. 2012], and woodworking

furniture and architecture [Fairham 2013; Larsson et al. 2020].

A specific subclass is single-key interlocking assemblies, where

all parts, except for a single key, are immobilized relative to one

another purely by their geometric arrangement, without relying

on friction [Song et al. 2012]. When an arrangement of initial parts

is given, designing interlocking assemblies can be formulated as a

joint planning problem such that the given parts can be interlocked
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by integral joints planned among them. Different joint planning

methods have been developed to design and fabricate various inter-

locking assemblies, including furniture [Fu et al. 2015; Song et al.

2017], laser-cut polyhedrons [Song et al. 2016], 3D-printable shell

assemblies [Yao et al. 2017a], and spatial frame structures [Wang

et al. 2018]. In addition, Zhang et al. [2021] studied voxel-like inter-

locking blocks and explored robotic assembly of 3D structures built

with instances of these blocks.

In our work, we show that cone joints can be optimized for de-

signing single-key interlocking assemblies. Compared with single-

direction joints used in the above works, cone joints allow more

flexibility (i.e., larger motion cone) to assemble parts.

Assembly-aware design. Assemblability means that individual

parts can be combined into a final assembly without collision. To

ensure assemblability, an assembly plan has to be found, which

includes a sequence of operations to insert the parts and the corre-

spondingmotions that bring each part to its target pose. The problem

of finding an assembly plan, known as assembly planning, has been
shown to be NP-complete [Kavraki et al. 1993]. To make the problem

tractable, researchers typically assume a linear assembly sequence

(i.e., assemble one part at a time) and simple assembly motion (e.g.,

translational motion); readers are referred to the survey [Ghandi

and Masehian 2015] for more details. Assembly-aware design aims to

ensure assemblability and to simplify the physical assembly process

by searching desirable assembly plans when designing assemblies.

For example, Kao et al. [2017] designedmasonry shell structures that

require significantly fewer supports for construction while Desai

et al. [2018] designed electromechanical devices that require only

translational motion for parts assembly.

Ourwork shows that cone joints have great potential for assembly-

aware design since they allow a flexible motion cone to assemble

each part. In particular, we have optimized cone joints to design

2D equilibrium puzzles that can be assembled without using any

support; see Figures 20 and 21.

Assemblies with curved contacts. When 3D printing objects as

assemblies, it has been shown that curved contacts are good for

respecting object geometric features [Hao et al. 2011] and user-

specified surface segmentation [Araújo et al. 2019]. Blocks with

curved contacts have been designed as 3D space-filling tiles, such

as Delaunay lofts [Subramanian et al. 2019], generalized Abeille

tiles [Akleman et al. 2020], and bi-axial woven tiles [Krishnamurthy

et al. 2020]. All these works make use of curved contacts as a way of

joining parts, without studying how these contacts restrict relative

part motion and affect an assembly’s structural stability.

Another typical application of blocks with curved contacts is to

make structurally stable planar assemblies such as pavements and

walls, using a concept called topological interlocking (TI) [Dyskin

et al. 2019]. In these TI assemblies, the whole structure is held to-

gether by a global peripheral constraint, while locally the blocks

are kept in place by kinematic constraints imposed by the curved

contacts. Dyskin et al. [2003] introduced osteomorphic blocks for

making planar TI assemblies, where the concavo-convex contact

surface profiles are defined by using a set of simple rules and mathe-

matical functions. Javan et al. [2016] proposed a new osteomorphic

block, which has a symmetrical geometry with four curved side

surfaces. Weizmann et al. [2017] developed a computational tool

for designing building floors made as TI assemblies with curved

contacts. Recently, researchers in architecture [Fallacara et al. 2019]

and civil engineering [Xu et al. 2020] designed 3D TI assemblies

with curved contacts by adapting the planar TI assemblies to a given

3D free-form surface. In all these works, structural stability of the

TI assemblies with curved contacts was not analyzed at the design

stage but just verified in physical experiments and/or simulations.

In contrast, we analyze stability of structures with curved contacts

using a computational method, and optimize curved-contact cone

joints to design structures that are assemblable and stable.

For a recent survey on computational methods for the design of

assemblies with rigid parts, we refer to [Wang et al. 2021].

3 MOTION SPACE ANALYSIS OF CONE JOINTS

Giving two parts Pi and Pj , a cone joint Ji , j connects them as a

curved or piecewise-planar contact between the two parts; see Fig-

ure 2(c&d) and 3(a). For simplicity, we discuss only the more general

case of curved contacts represented as parametric surfaces. We can

always convert such a joint to a piecewise-planar representation

(which might offer advantages for fabrication) by discretizing the

curved contact surface appropriately. Assuming part Pi is fixed, our

Fig. 3. Motion space analysis of (a) a joint Ji , j in a local coordinate frame.

(b) Generalized normal curve N (in black) and its minimum convex cone

envelope (in light cyan). (c) Motion cone V. (d) Sampling the curved contact

with five points. (e) Minimum convex cone envelope (dark cyan) of the

sampled generalized normals is contained in the original minimum cone

envelope. (f) Motion cone allowed by the sampled points (pyramid with

four colored faces) contains the original motion cone, where the color of

each face matches that of the corresponding sampled contact point and

generalized normal. (g) Conic sections of the two cone envelopes in (e) by cut

plane y = 1. (h) Conic sections of the two motion cones in (f) by cut plane

y = 1. We refer to the accompanying video for interactive visualizations.
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motion space analysis of joint Ji , j considers all possible infinitesimal

rigid motion to take out Pj from Pi without collision. This motion

space of part Pj , denoted as V, abstracts the ability of joint Ji , j to
restrict relative part motion. We will show later how this abstraction

is crucial for computational analysis and design of assemblies with

cone joints.

We express the infinitesimal rigid motion of part Pj using the

generalized velocity v, which is composed of both translation and

rotation. Denote a point on the curved contact of Ji , j as r̂ and its

normal as n̂; see Figure 3(a). The motion space V can be obtained

by solving a linear inequality system that represents non-collision

constraints for every point on the curved contact of Ji , j [Wang et al.

2019; Wilson and Matsui 1992]:

V = {v | n · v ≥ 0, ∀n ∈ N}

n =
[

n̂
r̂ × n̂

]
(1)

where n is the generalized normal of point r̂ with normal n̂, and N
is the generalized normal space of joint Ji , j .

For a smooth 2D joint, the generalized normal space N is a curve

in 3D space (2 dimensions for normal n̂ and 1 dimension for r̂ × n̂);
and the motion space V is a cone in 3D space (2 dimensions for

translation and 1 dimension for rotation); see Figure 3(b&c). We

make a connection between the generalized normal space N of

joint Ji , j and the motion space V of part Pj based on the dual cone

concept in convexity theory, and formulate the following theorems

and lemma; please refer to Section 2.6.1 in [Boyd and Vandenberghe

2004] for a derivation.

Theorem 3.1 (Dual Cone). The dual cone C∗ of a set C in Rn ,
defined as

C∗ =
{
y ∈ Rn : y · x ≥ 0, ∀x ∈ C

}
,

is always convex, even when the original set C is not.

According to Theorem 3.1 and Equation 1, the motion space V can be

viewed as the dual cone of the generalized normal space N, i.e., V =
N∗

. Hence, the motion space V must be convex no matter whether

the generalized normal space N is convex or not; see Figure 3(c).

Replacing the generalized normal space N with its minimum convex

cone envelope (see the cyan cone in Figure 3(b)) will not affect its

dual cone. This minimum convex cone envelope of N is called the

generalized normal cone, or simply cone(N).

A motion cone can be exactly defined by a cut plane and a cross

section from that cut (called the conic section); see Figure 3(h). For

a symmetric 2D joint like Figure 3(a), the cut plane is simply chosen

as y = 1. However, for general motion cones, it is critical to choose

a proper cut plane such that the conic section is finite; please refer

to the supplementary material for details. Similarly, the generalized

normal cone cone(N) also can be represented and visualized by a

cut plane and the corresponding conic section; see Figure 3(b&g).

Theorem 3.2 (Sampling). If Ñ is a subset of space N, the corre-
sponding dual cone Ṽ of Ñ should contain N∗ or equivalently V:

Ñ ⊆ N ⇒ V ⊆ Ṽ

Theorem 3.2 enables us to compute an approximation Ṽ of the

motion spaceV numerically. First, we sample the generalized normal

space N to obtain a finite subset Ñ; see the five colored points in

Figure 3(d&e). Next, an approximated motion cone Ṽ is computed by

intersecting a finite number of half-spaces described by Equation 1;

see the pyramid with four colored planes in Figure 3(f). Note that the

half-space corresponding to the dark blue point is not shown since it

does not contribute to the approximatedmotion cone Ṽ. Theorem 3.2

guarantees that the approximated motion cone Ṽ must cover all

possible motions in the original motion cone V; see Figure 3(f). In
our experiments, we find that 50 (200) sample points per 2D (3D)

joint provide a good approximation of the motion cone V.

Lemma 3.3. If a motion cone V is contained in a given space V0, it
is equivalent to require that cone(N) includes the dual cone of V0:

V ⊆ V0 ⇔ V∗
0
⊆ cone(N)

Lemma 3.3 can be used to generate joint geometry that have a

bounded motion cone V0. For instance, if the motion cone V0 is

chosen to be a circular cone with an angle α (i.e., {(x,y) : ∥x∥ ≤

tan(α)y}), then its dual cone V∗
0
is simply {(x,y) : ∥x∥ ≤

y
tanα },

which is also a circular cone with an angle
π
2
−α . Classic geometric

processing algorithms can be applied to find joint geometry whose

generalized normal cone contains the dual circular cone V∗
0
. We will

discuss in Section 6.3 how Lemma 3.3 guides geometric realization

of our cone joints.

4 STATIC ANALYSIS FOR ASSEMBLIES WITH CONE

JOINTS

Static analysis determines whether a given assembly is in equi-

librium under known external forces. Existing equilibrium meth-

ods work in force space, and focus on assemblies with planar con-

tacts [Whiting et al. 2009] or single-direction joints [Yao et al. 2017b].

This section shows that the force-based equilibrium method can

be extended for static analysis of assemblies with curved contacts,

albeit with a significant increase of computational cost (Section 4.1).

As an alternative, we propose a new motion-based equilibrium

method (Section 4.2). As we discuss in detail below, this approach of-

fers drastic performance improvements for our optimization-based

design of assemblies with cone joints.

4.1 Force-based Equilibrium Method

Test of equilibrium. The goal of the force-based equilibrium

method [Whiting et al. 2009] is to find a network of interaction

forces between the parts that can balance the external forces and

torques acting on each part. In assemblies with planar contacts, the

interaction forces are discretized as a finite number of forces at

the vertices of each contact interface (usually a 3D polygon). Since

we assume rigid parts and ignore friction, interaction forces only

include compression forces along the contact normal direction; see

Figure 4(a).

Combining equilibrium constraints for each part gives a linear

system of equations:

Aeq · f = −w s.t. f ≥ 0 (2)

where Aeq is the matrix of coefficients for the equilibrium equations,

f represents the unknown interaction forces, and w represents the
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Fig. 4. Force-based equilibrium method for static analysis of assemblies

with (a) planar contacts and (b) curved contacts. Taking the green part P2

as an example, its external force due to gravity is colored in orange, and its

contact forces fi are colored in blue.

generalized external forces acting on the assembly; see [Whiting

et al. 2009] for details. In particular, each element of f is the magni-

tude of contact force at each vertex of each contact interface, and

the dimension of f isM × 1, whereM is the total number of vertices

for all planar contacts in the assembly. For an assembly to be in

equilibrium, a force solution f that satisfies the linear system in

Equation 2 must exist.

Measure of infeasibility. When an assembly is not in equilibrium,

Whiting et al. [2009] proposed a method to measure its distance

to a feasible solution (i.e., an equilibrium state) by introducing ten-

sion forces that act as “glue" at part contact interfaces to hold the

assembly together and penalizing these tension forces:

min

f+, f−
1

2

f− · f−

s.t. Aeq · (f+ − f−) = −w,

f+, f− ≥ 0

(3)

where f+ is the positive parts (i.e., compression forces) of the contact

forces f , and f− is the negative parts (i.e., tension forces) of f . The
quadratic programming in Equation 3 enables to measure infeasi-

bility and to test equilibrium in a unified way, since an assembly

is in equilibrium if the infeasibility measure equals zero. Existing

algorithms to solve the quadratic programming with M variables

typically have a polynomial complexity with respect toM .

Extension for assemblies with curved contacts. To make the force-

based equilibrium method applicable for assemblies with curved

contacts, we need to approximate each curved contact as a piecewise-

planar surface. In practice, we simply sample points uniformly on the

contact and stack interaction forces for each sampled point to form

the vector f in Equation 2; see the inset. If

there exists a solution f for Equation 2, the as-
sembly is considered as in equilibrium. How-

ever, non-existence of such a solution does

not mean that the assembly is not in equi-

librium since our interaction forces are only

samples of the actual forces. To obtain a good approximation, we

typically require 50 (200) sample points per 2D (3D) joint, which is

similar to approximating a motion cone in Section 3. Note that the

number of sample points per curved contact is much higher than

the number of vertices (typically 4) per planar contact, increasing

the computational cost significantly to solve Equation 3.

Fig. 5. Motion-based equilibrium method for static analysis. In these exam-

ples, external forces are gravity (in orange) and ground supporting forces

only, and friction is ignored. (a) The assembly is in equilibrium as we cannot

find any parts motion that satisfies Equations 5 and 6. (b&c) The two as-

semblies are not in equilibrium, where a parts motion solution that satisfies

Equations 5 and 6 is shown as a dashed boundary and a black arrow.

4.2 Motion-based Equilibrium Method

As an alternative to the force-based approach, we propose a motion-

based equilibrium method, inspired by static-kinematic duality.

Test of equilibrium. Given an assembly, we assume each part Pi
can move freely in 3D space and model its infinitesimal rigid motion

as a generalized velocity vi . Each pair of adjacent parts, say Pi and
Pj , should not collide with each other during the movement:

nk · (vj − vi ) ≥ 0 (4)

where nk is a generalized normal sampled at the curved contact

between Pi and Pj . Stacking all these non-penetration constraints

forms a linear inequality system:

Bin · v ≥ 0 (5)

where Bin is the matrix of coefficients for the non-penetration con-

straints among the parts in the assembly, and v is a vector of gener-

alized velocities for all the parts. The parts that touch the ground

are fixed by setting their velocities to be zero. Note that the relation

between Equation 5 and Equation 2 has been established by Wang

et al. [2019]; i.e., Bin = AT
eq
.

When the inequality system in Equation 5 does not have any non-

zero solution, the assembly is considered as deadlocking, meaning no

part can move in the assembly. Otherwise, parts are movable. If the

part movement is driven by the given external forces (e.g., gravity),

the assembly should not be in equilibrium; see Figure 5(b&c) for

two examples. Inspired by this observation, we add an additional

constraint for the equilibrium test:

wT · v > 0 (6)

where w is the generalized external forces defined in Equation 2,

and wT · v can be understood as the total power created by the

external forces w for a given motion configuration v.
For an assembly to be in equilibrium, there should not exist any

solution v that satisfies the two linear constraints described in Equa-

tions 5 and 6; see Figure 5(a) for an example. This statement can be

proved by showing that it is actually equivalent to the force-based

equilibrium test (Equations 2) using Farkas’ lemma [Farkas 1902].
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Measure of infeasibility. Similar to our test of equilibrium, we

propose a measure of infeasibility based on the parts motion v:

max

v
wT v −

1

2

vT v

s.t. Bint · v ≥ 0

(7)

where the second term in the objective function is a regularization

to prevent the energy from becoming infinity. The assembly should

be in equilibrium when the infeasibility measure equals zero.

To understand the relation between our measure (Equation 7)

and that of [Whiting et al. 2009] (Equation 3), we apply the strong

duality theorem [Boyd and Vandenberghe 2004] to our measure,

and obtain the following formulation:

min

f, s

1

2

sT s

s.t. Aeq · f + s = −w,

f ≥ 0

(8)

where s is additional forces/torques required to make each part

in balance; see the supplementary material for a proof. This dual

formulation of our measure can be understood as an alternative of

the measure in [Whiting et al. 2009].

Lastly, the non-penetration constraints in Equation 7 can be re-

formulated based on the motion cone Vi , j of each curve-contact

joint Ji , j (see again Section 3):

vj − vi ∈ Vi , j (9)

Hence, the infeasibility measure (Equation 7) can be reformulated

as:

E(w, {Vi , j }) = max

vi
wT v −

1

2

vT v

s.t. vj − vi ∈ Vi , j , for each Ji , j

(10)

Remark. In terms of static analysis for assemblies with curved

contacts, our motion-based method has the same computational

complexity as the force-based method since they are convex qua-

dratic programs with dual constraints (see Equations 3 and 7), which

are typically solved by primal-dual algorithms [Monteiro and Adler

1989]. The strength of our method is for efficient design of struc-

turally stable assemblies with cone joints. As we pointed out earlier,

static analysis of assemblies with cone joints is computationally

expensive since each motion cone Vi , j in Equation 10 typically has

thousands of faces corresponding to the sampled generalized nor-

mals on the curved contact. Instead, based on our motion-based

method, we can satisfy the equilibrium condition efficiently by find-

ing approximated motion cones with a simple representation (e.g., a

cone with 4 faces), thanks to the convexity of these cones guaranteed
by Theorem 3.1. The parts/joints geometry can then be found later

to realize each of these approximated motion cones; see Section 6

for details about optimizing cone joints based on this idea.

5 MODELING ASSEMBLIES WITH CONE JOINTS

In this section, we first present a parametric model to represent the

geometry of cone joints with curved contacts. Next, we introduce a

method to model assemblies with cone joints.

Fig. 6. Model cone joints, where the principal direction u = +y . (a) An initial
linear contact between two parts Pi and Pj ; (b) an n-type cone joint; and

(c) a z-type cone joint. The curved contact of each cone joint is modeled as

a cubic spline defined by a few parameters (e.g., w1, h, and w2 in (b)).

5.1 Modeling Geometry of Cone Joints

We define a contact as a curve segment (in 2D) or surface patch

(in 3D) that lies exactly on two adjacent parts in an assembly. Each

contact is initialized as a linear segment (in 2D) or a planar surface (in

3D). Starting from each initial contact, a cone joint can be modeled

by modifying the geometry of the contact (i.e., making it curved).

We propose a parametric model to represent the geometry of these

cone joints. To facilitate understanding, we illustrate our parametric

model mainly on 2D examples, and briefly explain how it can be

extended to 3D.

One joint between two parts. Given two 2D parts, Pi and Pj , with
an initial linear contact defined by two endpoints p1 and p2, a local

coordinate system is defined in a way that the origin is at p1 and the

+x-axis is along vector p2 − p1; see Figure 6(a). We model the geom-

etry of the cone joint between the two parts as a continuous curved

contact. We parametrize the curved contact by using a cubic spline

that interpolates the two endpoints p1 and p2 (see Figure 6(b&c)).

According to the shape of the curved contact, joints can be classified

into two classes:

• n-type joint involves a concavity on one part and an extrusion on

the other part, similar to the mortise-and-tenon joint. The joint

shape is adjustable by three control points q1, q2, and q3 inserted

between the two endpoints p1 and p2; see Figure 6(b).

• z-type joint can be considered a combination of two n-type joints

with opposite orientations. The joint shape is adjustable by four

control points q1, q2, q3, and q4 inserted between the two end-

points p1 and p2; see Figure 6(c).

Compared with n-type joints, z-type joints generally have stronger

capacity to restrict relative part motion, at the cost of more complex

joint geometry and higher chance of stress concentration. In our

experiments, we set bounds for the joint parameters to preserve

their appearance and structural soundness.

To ensure that Pj can translate along a principal direction u while

Pi is fixed, the contact curve has to be a height field along u, taking
the initial contact p1p2 as the base. Figure 6(b&c) shows example
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Fig. 7. Model cone joints when the principal direction u deviates from the

y-axis. (a&b) Define a new local coordinate system such that +y∗ = u. (c)
Model the joint geometry in the new local coordinate system following the

same method as u = +y.

cone joints where Pj is removable along u = +y. When the principal

direction u deviates from the y-axis, we need to define a new local

coordinate system where the origin is still at p1 yet +y∗ = u; see
Figure 7(a&b). Next, we transform the endpoint p1 and p2 into this

new coordinate system, and follow the same method as u = +y to

model the joint geometry as a cubic spline; see Figure 7(c).

Multiple joints between two parts. Two initial parts may have more

than one linear contact when the parts have non-convex shape (see

Figure 8(a-c)). Ideally, we construct a cone joint for each linear

contact. To this end, we assign a principal direction uk to each

contact Ck , and follow the above method to model the joint. To

ensure that the two parts always can be separated, all assigned

uk ’s should have the same value; see Figure 8(d&e). Sometimes,

some initial contact could be unsuitable for modeling a joint, e.g.,

when the contact is too small. In this case, we simply skip the joint

modeling for that contact; see Figure 8(c&f) for an example.

Cone joints in 3D. The parametric model for cone joints in 2D can

be easily extended to 3D. In the following, we take a 3D n-type joint

as an example to illustrate the extension, for which the initial contact

is a 3D polygon and the principal direction is u = +z. We model

the 3D joint geometry as a parametric surface based on bivariate

Fig. 8. Model cone joints when (a) Pi , (b) Pj , or (c) both Pi and Pj have
non-convex shape, resulting multiple contacts between the two parts. (d&e)

The principal directions of the two contacts should be the same to ensure

P1 and P2 can be separated. (f) It is possible to skip joint modeling for some

initial contacts that are too small, e.g., the orange one.

Fig. 9. Model n-type cone joints in 3D. (a) Identify a large rectangular region

inside an initial 3D planar contact (i.e., the dashed polygon). (b) Compute

sixteen control points, where h is the height of the four points in the middle.

(c) Joint geometry modeled as a bicubic surface.

polynomials of degree 3 defined on a 3D rectangular region (l1 × l2)
within the initial contact. Hence, we first find a large rectangular

region inside the initial contact (Figure 9(a)). Next, we divide the

rectangular region into 9 rectangles with 16 interpolation points

{pi j } in total (Figure 9(b)). We assign the middle four points a height

value h and the remaining points zero height, and apply bicubic

interpolation to find the joint contact surface passing through these

control points (Figure 9(c)). We show in Section 6 how our simple

parametric model is well suited for optimization.

5.2 Modeling Assemblies with Cone Joints

In an assembly with n ≥ 2 parts, we denote the parts as {Pi },
1 ≤ i ≤ n. We assume a user-specified assembly sequence, and

name each part according to its assembly order (i.e., Pi is the ith
assembled part). In the initial assembly with planar contacts, we

model each part as a polyhedron. Faces in each part can be classified

as contact and non-contact faces, according to whether the part is

in contact with its neighbors through that face. Non-contact faces

are allowed to be augmented with geometric features to enrich the

assembly’s appearance.

The initial planar contacts between each pair of adjacent parts,

say Pi and Pj , are denoted as {Cki , j }. Each {Cki , j } typically contains

one contact, especially when initial parts are convex; see Figure 10(a)

Fig. 10. Model cone joints in an assembly. (a) An initial assembly with three

parts. (b) A modeled assembly that is disassemblable by taking out P3 first.

Examples of three cases that should be avoided: (c) cone joints intersect

with one another; (d) cone joints are too close to one another, leading to

structurally weak parts; and (e) motion cones of the joints are not well

planned, leading to a deadlocking assembly.

ACM Trans. Graph., Vol. 40, No. 4, Article 181. Publication date: August 2021.



181:8 • Ziqi Wang, Peng Song, and Mark Pauly

Fig. 11. Our computational design framework. (a) Our input is an initial assembly with planar contacts. (b) Motion-based representation of the initial assembly,

where the joint motion cones (3D) and part motion cones (2D) are colored in magenta and gray respectively. (c&d) Kinematic design satisfies the two design

goals by iteratively finding the required joint motion cones (colored in blue). (e-h) Geometric realization finds joints geometry independently to satisfy the

corresponding joint motion cone. (i) The resulting assembly.

for an example. The cone joints modeled from the initial contacts

{Cki , j } are denoted as {J
k
i , j }. The geometry of each joint Jki , j is param-

eterized by a small set of parameters Φk
i , j , which include the joint

Jki , j ’s principal direction uki , j (see Figure 10(b)) and the geometric

parameters illustrated in Figure 6(b&c).

To ensure that parts (with cone joints) are fabricable and assem-

blable, several cases of joint configurations should be avoided by a

careful selection of the joint parameters {Φk
i , j }. First, intersection

among the cone joints should be strictly avoided to ensure that

the assembly is physically realizable. For example, the extrusion

portions of J1,2 and J1,3 in P1 should not intersect with each other

like in Figure 10(c). Second, when a part has multiple cone joints,

those cone joints should maintain a certain distance to one another

to ensure structural soundness of the part. For example, part P2 in

Figure 10(d) is structurally weak since joints J2,3 and J1,2 are too

close. Lastly, deadlocking should be avoided to ensure that parts

can be physically assembled; compare Figure 10(b&e).

6 DESIGNING ASSEMBLIES WITH CONE JOINTS

Taking an assembly with planar contacts as an input, our goal is to

make it structurally stable and assemblable by constructing cone

joints among the parts; see Figure 11(a&i). Here, structural stability

means that the assembly is in equilibrium under known external

forces {wi } (e.g., gravity of each part) while assemblability means

that each individual part can be inserted without colliding with

assembled parts, by translation along any direction within a suffi-

ciently large cone. We model this required assemblability cone for

each part Pi as a circular cone K(di ,α) for simplicity, where di is
the cone’s axis and α is the cone angle.

To obtain a structurally stable assembly, we prefer that each

constructed cone joint can restrict the relative motion between

the associated parts as much as possible. In the limit, each joint

becomes a single-direction joint. However, to satisfy the goal of

assemblability, single-direction joints should be strictly avoided

and each constructed joint should have enough tolerance in the

insertion direction of associated parts. Hence, our challenge is to

find the geometry of cone joints that satisfy these two conflicting

goals (i.e., stability and assemblability) simultaneously.

6.1 Overview of our approach

To address this problem, one straightforward approach is to directly

search parameters that define the geometry of cone joints, e.g.,

by using a gradient-based method similar to [Whiting et al. 2012].

However, this approach has several limitations. First, the test of

equilibrium could be very slow due to the dense sampling of cone

joints; see Section 4.1. Second, the approach heavily relies on the

initial geometry of the joints. Changing joint geometry significantly

or even joint type requires restarting the whole search process.

Inspired by our motion-based equilibrium method in Section 4.2,

we propose a new computational approach that is able to search the

joint parameters efficiently and flexibly; see Figure 11. The key idea

is to separate the search process into two stages: kinematic design
and geometric realization, by introducing an intermediate motion-

based representation of the assembly. In the kinematic design stage,

we aim to satisfy the two design goals kinematically, by searching

the motion cone required for each cone joint; see Figure 11(c&d).

In the geometric realization stage, we compute for each joint suit-

able geometric parameters to satisfy the required motion cone; see

Figure 11(e-h). The strength of our approach is that the kinematic

design stage converts the two high-level design goals into a set of

local requirements on the geometry of each individual joint. This

allows us not just to search geometric parameters independently

for each joint, but also to try as many initial joint parameters/types

as possible to avoid local minima. Moreover, the kinematic design

stage itself is very efficient since it purely works in motion space

and focuses on the required motion cones with very few faces.
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6.2 Kinematic Design

To facilitate discussion, we assume a single planar contact Ci , j
between each pair of adjacent parts Pi and Pj in an assembly, from

which our approach will construct a cone joint Ji , j by optimizing its

parameters Φi , j defined in Section 5.2. The kinematic design stage

aims at finding a required motion cone V̄i , j for each cone joint Ji , j
such that the two design goals can be satisfied kinematically. In the

following, we first present a motion-based representation of a given

assembly and then describe an optimization to search {V̄i , j } based

on this representation.

Motion-based representation. An assembly {Pi } can be represented
by a parts-graph, where each node represents a part and each edge

represents the contact/joint between the two associated parts. The

known part assembly order can be easily encoded in the parts-graph

by adding a direction for each edge. More precisely, each directed

edge from Pj to Pi indicates that Pi will be assembled before Pj (i.e.,
i < j according to our notation); see Figure 11(b).

Our motion-based representation augments this directed parts-

graph with two pieces of information. We associate to each edge

from Pj to Pi a motion cone Vi , j allowed by the contactCi , j or joint
Ji , j . The geometry of the motion cone Vi , j is defined by all possible

infinitesimal rigid motions of Pj to separate it from a fixed Pi ; see
again Figure 3(a&c). For each node Pj , we define a motion cone

Vj of all possible infinitesimal translational motion to take out Pj
from the partial assembly {P1, ..., Pj−1}. Denote the indices of Pj ’s
adjacent parts in the given assembly as A(j). The motion cone Vj
for taking out Pj can be represented as:

Vj =
⋂

i<j , i ∈A(j)

T (Vi , j ) (11)

where T (·) is an operator that converts a rigid motion cone into a

translational motion cone by ignoring the rotational component.

This is because we assume translational motion for assembling the

parts due to its simplicity of execution. Vj is called the part motion

cone and used for checking (dis)assemblability while Vi , j is called

the joint motion cone and used for static analysis.

Given the motion-based representation, we are able to easily test

whether the two design goals are satisfied. For equilibrium, we run

the optimization in Equation 10, in which each joint motion cone

Vi , j is defined in a global coordinate system associated with the

assembly rather than the joint local coordinate system. To verify

assemblability, we search whether each part motion cone Vj con-

tains a circular cone K(−dj ,α), where the cone angle α is a constant

and the cone direction dj is unknown. Note that the circular cone
K(−dj ,α) is a disassemblability cone, which is actually a reflection

of the assemblability cone K(dj ,α) in the motion space.

Search for required joint motion cones {V̄i , j }. We model each re-

quired joint motion cone V̄i , j as a polyhedral cone with a small

number of faces to speed up the static analysis process. In partic-

ular, the conic section of each required joint motion cone V̄i , j is

a rectangle (4 faces) for 2D joints and 5D cuboid (10 faces) for 3D

joints, defined in the joint local coordinate system; see Figure 12(top).

When transformed to the global coordinate system, these conic sec-

tions will not be rectangle/cuboid any more; see Figure 12(bottom).

Fig. 12. (a&d) Given a joint, (b&e) its actual and required joint motion

cones as well as (c&f) their conic sections are colored in magenta and blue,

respectively. When changing from (top) the joint local coordinate system to

(bottom) the assembly global coordinate system, the motion cones change

accordingly. An example bound of the required joint motion cone is colored

in grey in (c&f), for the joint’s principal direction u = +y .

We parameterize the geometry of each motion cone V̄i , j in 2D (3D)

with a few variables denoted as Ψi , j = {ψi , j }. Based on the re-

quired joint motion cones {V̄i , j }, we compute the corresponding

part motion cones {V̄j } according to Equation 11.

Given the required joint motion cones {V̄i , j } as well as the known

external forces {wi }, we compute the assembly’s infeasibility mea-

sure for equilibrium by solving Equation 10. Based on our modeling,

each required joint motion cone V̄i , j can be converted back to 4 (10)

linear constraints in our infeasibility energy optimization for each

2D (3D) joint. With very few constraints, the optimization can be

performed efficiently. We also satisfy the goal of assemblability by

requiring the following constraint for each part motion cone V̄j :

K(−dj ,α) ⊆ V̄j (12)

To this end, the kinematic design can be formulated as a problem

to search for the required joint motion cones {V̄i , j } by solving the

following optimization:

min

Ψi , j , dj
E(w, {V̄i , j })

s.t. K(−dj ,α) ⊆ V̄j ,
(13)

where E is the motion-based infeasibility measure in Equation 10.

In practice, we avoid too small motion cones for the cone joints

such that the motion cones can be realized by joint geometry later.

Hence, we set a bound for the parameters Ψi , j of each required joint

motion cone V̄i , j ; see Figure 12(c&f). The above optimization can

be solved by using an off-the-shelf interior-point method. Please

refer to the supplementary material for details.

Once we have obtained the required joint motion cones {V̄i , j },

we should require Vi , j ⊆ V̄i , j , where Vi , j is the actual joint motion

cone, to ensure the resulting assembly is in equilibrium. To satisfy

the goal of assemblability, we should require K̂(−dj ,α) ⊆ Vj ⊆ Vi , j ,

where K̂(−dj ,α) = K(−dj ,α) × {0}2m−3, m = 2, 3 is the circular

cone K(dj ,α) of a mD joint represented in a higher dimensional

space (i.e., represent translational motion cone in the rigid motion

space). In summary, the kinematic design stage converts the two
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Fig. 13. Geometric realization process for a single joint. From left to right,

initial planar contact, intermediate joints, and resulting joint. From top to

bottom, joints represented in geometric space, motion space, and generalized

normal space, respectively. The conic sections of the required joint motion

cones are shown in blue, the required disassemblability cones in orange,

and the actual joint motion cones in magenta.

design goals into a set of local requirements for each cone joint Ji , j
to be constructed at the geometric realization stage:

K̂(−dj ,α) ⊆ Vi , j ⊆ V̄i , j , for each Ji , j (14)

6.3 Geometric Realization

Geometric realization aims to construct the geometry of each cone

joint to satisfy the constraint on the joint motion cone Vi , j in Equa-

tion 14. According to Theorem 3.2, Vi , j can be approximated by

sampling the joint’s generalized normal space Ñi , j = {nl (Φi , j )}

and computing the dual cone, i.e., Vi , j ≈ Ñ∗
i , j .

To achieve our goal, we could optimize the joint shape (i.e., search

the joint design parameters Φi , j ) such that the joint motion cone

Vi , j satisfies the constraint in Equation 14. However, computing

the joint motion cone is already very time-consuming, let alone

doing shape optimization for it. A better way is to perform the

shape optimization in the generalized normal space Ñi , j , which is

directly controlled by the joint parameters Φi , j . Lemma 3.3 provides

a strategy to transform the constraints from the motion space (see

Equation 14) to the generalized normal space:

V̄∗
i , j ⊆ cone(Ni , j ) ⊆ K̂(−dj ,α)∗ (15)

in which the direction of the subset symbol "⊆" is reversed due to

the dual operator.

In particular, the dual of the required joint motion cone V̄i , j , a

polyhedral cone, is just the minimum convex cone envelope of the

polyhedral cone’s face normals {fk (Ψi , j )}:

V̄∗
i , j = cone({fk (Ψi , j )}) (16)

And the dual of the circular cone K̂(−dj ,α) is still a circular cone,
just with a cone angle

π
2
− α :

K̂(−dj ,α)∗ = (K(−dj ,α) × {0}2m−3)∗

= K(−dj ,
π

2

− α) × R2m−3
(17)

We illustrate the relation between the dual cones using their conic

sections for 2D assemblies in Figure 13. The required disassembla-

bility cone is an infinitely long strip, and the required joint motion

cone is the minimum convex cone envelope of face normals {fk }.
The minimum convex cone envelope of Ni , j has to stay in between

the conic sections of these two required cones. To this end, we

formulate our joint shape optimization as an energy minimization

problem:

min

Φi , j

∑
l ,k

dist(cone({nl }), fk )

s.t. nl ∈ K(−dj ,
π

2

− α) × R2m−3

(18)

where dist(cone({nl }), fk ) is the distance between the minimum

convex cone envelope cone({nl }) and the face normal fk . In partic-

ular, dist(cone({nl }), fk ) = 0 when the face normal fk is inside the

cone({nl }). We compute the distance using quadratic programming:

dist(cone({nl }), fk ) = min

λl ≥ 0

∥fk −
∑
l

λlnl ∥
2

(19)

One additional constraint is to maintain a certain distance between

each joint Ji , j and the boundary of parts Pi and Pj to ensure validity
and structural soundness of these two parts; see again Figure 10(c&d).

To this end, we combine the shape of parts Pi and Pj , and compute a

signed distance function to the shape boundary; see Figure 14(b&d).

The constraint is satisfied by requiring the distance value of each

point on the joint Ji , j to be larger than a threshold; see Figure 14.

The initial values of joint parameters Φi , j can profoundly influ-

ence the result. Fortunately, the geometric realization is performed

independently among the joints (see again Figure 14), and each joint

optimization problem only has a few variables. Hence, for each joint,

we try as many initial values as possible to avoid local minima by

uniformly sampling the variables. Similar to the optimization at

the kinematic design stage, the joint optimization at the geometric

realization stage can be solved by an off-the-shelf interior-point

method.

Fig. 14. Geometric realization process on a 3-part assembly. Starting from (a)

an initial assembly, we (b) compute a distance function for the boundary of

parts P1 and P2 to (c) construct joint J1,2. Next, we (d) compute a distance

function for the boundary of parts P2 and P3 to (e) construct joint J2,3.
(f) The resulting assembly. In (b&d) the distance functions, green and red

indicate small and large distance values, respectively.
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In practice, we need to iterate between the kinematic design and

geometric realization stages several times. This is because each

part’s centroid and weight (i.e., volume) are assumed to be fixed at

the kinematic design stage, yet are subject to change after joints

are constructed in the geometric realization stage. To alleviate this

issue, our approach prefers not to have dramatic changes on the joint

geometry at each iteration. Occasionally, the geometric realization

stage may not be able to find any joint geometry that satisfies the

required motion cone computed at the kinematic design stage. To

this end, updating the lower bound for the required joint motion

cones according to the current joint geometry (i.e., the new bound

is the same as the joint motion cone) would facilitate the search of

joint geometry in the next iteration.

7 RESULTS

We implemented our tool in C++ and libigl [Jacobson et al. 2018],

and employed Knitro [Artelys 2020] for solving our optimizations.

We conducted all experiments on a Linux workstation with an AMD

Ryzen Threadripper 3990X 64-Core Processor and 128GB of RAM.

We show that our approach can handle assemblies with a variety

of geometric forms, including planar, volumetric, frame, and shell

structures; see Figure 1. Thanks to the flexibility offered by our

cone joints, our approach can compute assemblies that are stable to

different degrees, e.g., equilibrium under gravity, stable under lateral
forces, and single-key interlocking. Our approach can also consider

stability not just for the final assembly but also for intermediate

stages of the assembly process. By this, we can generate support-free
structures that can be assembled without using any support.

Statistics. Table 1 summarizes the statistics of all the results pre-

sented in the paper. The third to seventh columns show if the result

is 2D or 3D, the total number of parts, the total number of joints,

angle α of the required assemblability cone, one of the four features

mentioned above, and optimization time, respectively. The angle α
is typically set as 5 degrees, which is sufficient for inserting parts

Table 1. Statistics of the results shown in the paper.

Fig. 15. Comparison of stability and assemblability of 4-part Scarecrows

with (left) planar contacts, (middle) single-direction joints, and (right) our

optimized cone joints.

easily. We set a larger α for making the cone joints less sharp (Fig-

ures 15(right) and 18) and a smaller α for making the assembly more

stable (Figure 16(c)). We can also not consider assemblability as a

design goal by not setting any value for angle α (Figure 17). Our

approach typically takes less than 1 minute to generate 2D results

yet may take hours for 3D results due to the larger number of joints

as well as more variables to define the geometry of each joint.

Evaluation of cone joints. We compare our optimized cone joints

with planar contacts and single-direction joints by designing three

2D puzzles; see Figure 15. To verify stability and assemblability

of these puzzles, we fabricate them with laser-cutting. Our experi-

ment shows that the puzzle with planar contacts is not in equilib-

rium under gravity; see Figure 15(left). To assemble the puzzle with

single-direction joints, we need to align each part with the partially

completed puzzle carefully before it can be successfully inserted;

see Figure 15(middle). Compared with these two puzzles, our puzzle

with cone joints avoids the two issues by achieving a good balance

between stability and assemblability; see Figure 15(right). Please

watch the accompanying video for demos.

We compare our cone joints with planar contacts and standard

mortise-and-tenon joints by designing four 6-part Spheres. The

sphere with planar contacts cannot be in equilibrium under gravity,

and the sphere with standard mortise-and-tenon joints are dead-

locking; see Figure 16(a&b). We show that our approach can make

the sphere single-key interlocking by constructing cone joints; see

Figure 16(c). This is achieved by applying an external force configu-

ration on the assembly, where at each contact the external force tries

to push the two associated parts and separate them. The assembly

is single-key interlocking if it passes our equilibrium test under

this external force configuration, assuming the key is held by other

Fig. 16. Comparison of stability and assemblability of 6-part Spheres with

(a) planar contacts, (b) standard mortise-and-tenon joints, (c) our optimized

cone joints, and (d) tilted mortise-and-tenon joints derived from our result.

The assembly in (a) is not stable while the one in (b) is deadlocking.
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means; see the supplementary material for a proof. Our design re-

sult can be easily modified to derive some variants, e.g., to facilitate

fabrication. For example, we can replace each curved-contact joint

with a tilted mortise-and-tenon joint based on the principal direc-

tion u of the joint; see Figures 16(d) and 7. The resulting assembly is

guaranteed to be interlocking since a tilted mortise-and-tenon joint

has a smaller motion cone than any curved-contact joint.

Evaluation of our optimization. To show the benefits of our de-

sign approach, we compare it with a baseline approach that directly

searches parameters of cone joints using a gradient-based method,

similar to [Whiting et al. 2012]. Both approaches take the same

assembly with planar contacts as input (Figure 17(a)), and generate

curved-contact joints to make the assembly be in equilibrium (Fig-

ure 17(b&c)). Figure 17(d) shows the computation time of the two

approaches with respect to the number of parts. When the num-

ber of parts is small, the computation time of the two approaches

are comparable. However, the computation time of the baseline in-

creases dramatically when the number of parts is more than 16 since

the computation cost becomes dominated by the equilibrium test,

which is expensive for assemblies with many curved-contact joints.

Thanks to the kinematic design stage, our approach avoids execut-

ing the expensive equilibrium test frequently whenever changing

joints geometry. During the experiment, we find that the baseline

approach sometimes can find better solutions than ours, especially

when the number of parts is small. For example, when there are only

two parts where the bottom one is fixed, the baseline creates a cone

joint that makes the assembly in equilibrium yet our approach fails

to do so; see Figure 17(e). This is because our kinematic design stage

Fig. 17. Comparison of our design approach with a baseline approach: (a)

an example input assembly; (b&c) a result generated by our approach; (d)

computation time of the two approaches with respect to the number of

parts; and (e) an example case where the baseline performs better.

Fig. 18. Equilibrium puzzle Tree generated by our approach. From left to

right: input assembly, our result, and laser-cut puzzle.

assumes the parts’ centroids are fixed, which actually may change

after joints have been constructed in the geometric realization stage.

Equilibrium puzzles. We have used our approach to generate

2D/3D equilibrium puzzles. Figure 1(a&b) shows two puzzles, M

and Horse, which cannot be in equilibrium if we simply use planar

contacts. This is because planar contacts cannot prevent the motion

(e.g., sliding) of some parts caused by gravity such as the two parts

at the middle of M and the head part of Horse. Figures 18 shows a

puzzle Tree as well as the fabricated result. Our designed cone joints

not only make the puzzle stable under gravity, but also provide a

hint to find puzzle pieces that should match with one another.

Given input assemblies that are far from an equilibrium state, our

approach can still make it stable. To demonstrate this, we create

a sequence of input assemblies, where parts have the same shape

(except bottom ones) but have been tilted for a certain angle; see

Figure 19(left) for an example input. Due to the parts arrangement,

the larger the tilt angle is, the further the assembly is from an

equilibrium state. We construct cone joints for each input assembly

to make it be in equilibrium using our approach; see Figure 19 for

three example results. We observe that our optimized cone joints

become more and more sharp when the tilt angle increases since a

sharp joint corresponds to a small motion cone. A drawback of these

sharp cone joints is that they may fail due to stress concentration.

To alleviate this issue, additional constraints on the joint shape can

be enforced during the geometric realization stage.

Our approach can be extended to design support-free puzzles; see

Figures 20 and 21. These puzzles are in equilibrium for each inter-

mediate assembly state, and thus can be assembled without using

any support. To generate these puzzles, we assume a predefined

assembly sequence, and take all the intermediate assemblies and

the final assembly as input of our kinematic design. We obtain the

required joint motion cones by summing the infeasibility energy in

Equation 13 for all the input assemblies and solving the optimization.

The geometric realization is performed without any change.

Fig. 19. Tilt experiment on (left) an input Leaning Tower to verify the ability

of our designed cone joints to make an assembly stable. From left to right:

the tilt angles of the three results are 10, 20, and 30 degrees, respectively.
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Fig. 20. Support-free equilibrium puzzle Leaning Tower with 15 degrees tilt angle (see also Figure 19).

Fig. 21. Support-free equilibrium puzzle Deer. The input assembly is shown on the left and parts that are fixed during the assembly process are colored in gray.

Fig. 22. An Igloo shell with lateral stability designed by our approach.

Shell structures. Shell structures with planar contacts can be used

as masonries in architecture. These structures are self-supporting
if they can be in equilibrium under gravity [Panozzo et al. 2013].

Shell structures with an inverted bump on the top usually cannot

be self-supporting; see Lilium Tower in Figure 1(d). Taking such

a structure as input, our approach can make it self-supporting by

creating cone joints for some of the planar contacts. Our approach

onlymodifies a small subset of the planar contacts since our gradient-

based optimization changes contact geometry only if it can reduce

the infeasibility energy in Equation 13.

In some applications (e.g., architecture), a shell structure should

be in equilibrium under not just gravity but also lateral forces (e.g.,

from wind). This lateral stability can be evaluated by simulating a

tilt analysis experiment, where the ground plane of the structure

is tilted to apply a lateral force to the structure caused by gravity.

The lateral stability is measured by the largest angle of tilting the

ground plane without collapse of the structure [Wang et al. 2019].

Our approach can generate shell structures with lateral stability

by a slight change on the kinematic design stage. In detail, we

sum the infeasibility energy E in Equation 13 for multiple external

force configurations (i.e., gravity, and lateral forces from different

directions). The assembly is considered as laterally stable if it is in

equilibrium under any of the external force configurations. Figure 22

shows a shell structure Igloo that cannot be in equilibrium under

gravity if only planar contacts are used. By using our cone joints,

we show that the structure can be tilted for at most 35 degrees.

Frame structures. Frame structures composed of rod-like parts

are widely used in architecture and furniture. In these structures,

each part contacts others at its two ends and each contact area is

usually quite small. Our approach can optimize cone joints to make

these structures stable. The resulting cone joints look similar to

single-direction joints; see Pavilion in Figure 1(c). This is perhaps

because these structures with planar contacts are far away from

an equilibrium state, and thus joints with a small motion cone are

needed to make them stable.

8 CONCLUSION

Assemblability and stability are two necessary conditions for us-

ing assemblies in the physical world. However, they could be in

conflict with each other when restricting relative part motion with

joints. Finding a trade-off between these two conditions is a chal-

lenging task for conventional approaches based on planar contacts

or single-direction joints. We propose cone joints to address this

challenge, which interpolate between planar contacts and single-

direction joints in terms of capacity to restrict relative part motion.

We quantify this capacity as a motion cone, and present an approach

to optimize cone joints for designing structures that are assemblable

and stable. We found the separation into kinematic and geometric

stages essential to make the optimization computationally tractable.

We show versatility of our approach by designing a variety of 2D/3D

assemblies that are in equilibrium under gravity, stable under lateral

forces, interlocking, or support-free for the assembly process.

Limitations and Future Work. Our work has several limitations

that open up interesting directions for future research. First, the

geometry of 2D/3D cone joints that can be supported by our current

parametric model is quite limited. Exploring more complex paramet-

ric models and studying their impact on the motion cones would be

an interesting future work. Second, we plan to include friction in our

motion-based equilibrium method as well as the design approach.

Third, our geometric realization stage focuses on generating geom-

etry of cone joints to match optimized motion cones. Taking other

aspects such as appearance and structural soundess of joints into
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consideration would make the designed cone joints more practical

for use. Lastly, we approximate the required motion cones in the

kinematic design stage as a pyramid with 4 (10) faces for 2D (3D)

joints to speed up the static analysis. In the future, we may try more

accurate approximations to see if they are helpful to improve the

design performance.
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