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Fig. 1. Three 𝐾-hedral tiling results produced by our inverse tiling approach. To effectively tile each of the 2D finite domains shown above, our approach

constructs a minimized set of distinct tile shapes called prototiles; see the box below each tiling result. In particular, our approach is versatile. It can handle

domains represented by various forms of grid, e.g., a square grid (left), a hexagon grid (middle), and a square-triangle grid (right).

A 𝐾-hedral tiling of a 2D finite domain is a covering of the domain with

tiles without gaps or overlaps, where each tile is congruent to one of the 𝐾

distinct shapes called prototiles.𝐾 , the number of prototiles, is preferred to be

as small as possible for congruent tiling appearance and reducing fabrication

cost, e.g., by molding. Typically, a forward approach is adopted to produce𝐾-

hedral tilings by prescribing a set of prototiles and placing prototile instances

(i.e., tiles) to cover the input domain. However, the prescribed prototile set

may not be sufficient to tile the domain (for small 𝐾 ) or may lead to tiling

results with excessive prototiles more than needed (for large 𝐾 ).

In this work, we formulate a new tiling problem called inverse tiling for
producing𝐾-hedral tilings in 2D finite domains, where the prototile set is in-
versely modeled to fit the input domain instead of being prescribed. Since the
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prototile set is unknown, inverse tiling allows exploring a large search space

to discover a minimized number of prototiles for tiling the input domain. To

solve the inverse tiling problem, we propose a computational approach that

progressively builds the prototile set while tiling the input domain, starting

from a prototile set with a single element. Once a tiling result is obtained, the

approach further tries to reduce the number of prototiles by locally re-tiling

the input domain to eliminate prototiles with few instances. We demonstrate

the effectiveness of our inverse tiling approach on a variety of finite domains,

evaluate its performance in scalability and 𝐾 minimization, and compare it

quantitatively with forward tiling approaches.
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1 Introduction

A tiling is a coverage of a domain using a countable set of regions

called tiles, with no overlaps and no gaps [Grünbaum and Shephard

2016]. A 𝐾-hedral tiling is a tiling, in which every tile is congruent

to one of 𝐾 distinct shapes called prototiles. The 𝐾-hedral tiling
of an infinite domain such as the Euclidean plane has been well
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Fig. 2. (Top) Forward tiling assumes a given set of prototiles for tiling the

domain. (Middle) When the prototile set is not sufficiently large, forward

tilingmay not produce a tiling solution. (Bottom) Our inverse tiling approach

computes a small set of prototiles (three vs. five in forward tiling) that can

tile the input domain with 𝑁 = 9 prototile instances.

studied [Grünbaum and Shephard 2016] and employed in various

graphics applications [Kaplan 2009]. In this work, we study𝐾-hedral

tiling of 2D finite domains, which often appears in recreation and

architecture applications. In practice, a small set of prototiles (i.e., a

small 𝐾 ), not only makes the tiling aesthetically pleasant with more

congruent appearance, but also reduces the fabrication cost (e.g., by

molding) and simplifies the tile assembly process.

To produce a 𝐾-hedral tiling for a 2D finite domain, existing

approaches typically assume that the prototile set is given. That
means 𝐾 and the shapes of the 𝐾 prototiles are prescribed. Hence,

the tiling process is to take instances of the prototiles to seamlessly

cover the given domain [Garvie and Burkardt 2020; Xu et al. 2020].

This forward tiling process is illustrated in Figure 2 (top). On the

one hand, when the prototile set contains a large variety of shapes

(large 𝐾) , we have more choices, so a tiling solution can often be

found. However, the resulting tiling may involve a large variety of

prototiles, since 𝐾 is not minimized, so the fabrication cost would

increase. On the other hand, when the number of prototiles is not

that large (small 𝐾 ), it is uncertain whether the prototile set can tile

the domain; see Figure 2 (middle) for an example. To know whether

there is any tiling solution requires a time-consuming trial-and-error

process over different subsets of a large prototile set.

In this work, we take a new perspective to look at the production

of 𝐾-hedral tiling and formulate a new tiling problem called inverse
tiling of 2D finite domains, for which

(i) the prototile set is not given, and is computed (or inversely

modeled) to fit the input domain; and

(ii) the number (𝐾 ) of prototiles needed to tile the domain should

be minimized.

Figure 2 (bottom) shows an example, in which a small set of three

prototiles is computed for tiling the same domain as the forward

tiling example on top, which uses five prototiles. Importantly, as

Figure 2 (middle) shows, arbitrarily picking three prototiles may

not form a prototile set that can tile the domain. Fundamentally,

forward tiling is a well-known NP-complete problem [Moore and

Robson 2001]. As for inverse tiling, we have proven that it is an

NP-hard problem, meaning that it is at least as hard as the forward

tiling problem; see the mathematical derivation in Supp. 1.

Obviously, a trivial solution to produce inverse tilings with mini-

mized 𝐾 would be using a single-square prototile (i.e., monomino)

to tile the entire domain, say for the square-grid domain in Figure 2.

Then, 𝐾 is only one. Taking one step forward, we may use monomi-

noes and dominoes to tile the domain, then 𝐾 is only two. However,

the resulting tilings would be less appealing with only simple pro-

totile shapes and contain a huge number of tiles. Hence, as Figure 2

(bottom) illustrates, we take 𝑁 , the number of tiles (i.e., prototile

instances), as a control parameter to facilitate the construction of

𝐾-hedral tilings with more interesting prototile shapes. Moreover,

we impose a constraint on the prototile size to avoid generating

prototiles that are too small or too large.

To make inverse tiling tractable, we assume that the input 2D

domain is represented by a grid, in which the grid cells have few (typ-

ically one or two) unique shapes; see Figure 2 (left) for an example.

Having that, we design a computational approach to progressively

build the prototile set while tiling the input domain. To minimize

the number (𝐾 ) of prototiles, the approach starts by randomly dis-

tributing 𝑁 seeds (i.e., instances of a single-cell prototile with𝐾 = 1)

over the input domain. Then, it iteratively enlarges the instances of

each prototile in a congruent way, to avoid unnecessary increase

in the number of prototiles, until the domain is fully covered by

the prototile instances. Once a tiling of the domain is obtained, it

further tries to reduce the number of prototiles by locally re-tiling

the input domain to eliminate prototiles with few instances.

Specifically, we make the following contributions.

• We formulate a new tiling problem called the inverse tiling for

producing 𝐾-hedral tilings in 2D finite domains, aiming to auto-

matically find a minimized set of prototiles, typically with desired

size and/or shape, for tiling the input domain.

• We propose a computational approach for solving the inverse

tiling problem, where our approach outputs the number of pro-

totiles, shape of each prototile, and a tiling of the domain using

instances of the constructed prototiles.

We show that our inverse tiling approach is able to tile 2D finite

domains of a rich variety of shapes and grid structures; see Figure 1.

We evaluate the scalability of our approach with respect to the input

domain size as well as the number (𝑁 ) of tiles, and evaluate also

the performance of our approach in minimizing the number (𝐾 ) of

prototiles. Further, we compare our inverse tiling approach with

existing forward tiling approaches, showing that our approach is

able to find tiling solutions with a smaller number of prototiles.

Code and data of this paper are available at https://github.com/

Linsanity81/InverseTiling.

2 Related Work

Tiling of 2D finite domains. In computer graphics, tiling of the

infinite Euclidean plane has been studied in various contexts such

as texture synthesis [Cohen et al. 2003], sampling [Ahmed 2019;
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Kopf et al. 2006; Ostromoukhov 2007; Ostromoukhov et al. 2004],

and decorative pattern generation [Meekes and Vaxman 2021]. In

particular, Smith et al. [2024] recently discovered the first true ape-

riodic monotile called “the hat” for tiling the plane. Instead of tiling

the plane, some works study tiling of 2D finite domains using a

small set of prescribed tile shapes. Peng et al. [2018] studied tiling

of 2D finite domains using squares and regular triangles, and fur-

ther lifted the 2D tiling onto a 3D surface for designing interesting

triangle-quad hybrid meshes. Later, Peng et al. [2019] studied tiling

with three specially-chosen rhombic tiles, i.e., 30
◦
-, 60

◦
-, and 90

◦
-

rhombus, and generated a variety of tiling results with intricate 2D

and 3D checkerboard patterns. Xu et al. [2020] designed a neural

optimization to approximate a given 2D finite domain using one or

more types of tile shapes, attempting to maximally fill the domain’s

interior without overlaps or holes.

All the above works take a forward approach to find a feasible

tiling of a 2D finite domain, whose boundary is represented by a

closed polyline. Due to the simplicity of the prescribed prototile

set, such approach can only tile domains whose boundary satisfies

certain geometric constraints [Peng et al. 2019, 2018] or generate

tilings that maximally cover the input domain [Xu et al. 2020].

Polyform tiling. A polyform is a planar figure constructed by join-

ing together identical basic polygons edge to edge, e.g., squares,

regular triangles, and regular hexagons, where the associated poly-

forms are called the polyomino, polyiamond, and polyhex, respec-

tively [Myers 2019]. Polyform tiling employs instances of one or

more (small) polyforms to cover a given (large) polyform, which can

be finite or infinite. Among the various polyform tilings, polyomino

tiling [Golomb 1994] is a well-known one. Golomb conducted pio-

neer research on polyomino tiling of an infinite domain (e.g., plane,

half plane, and strip) [Golomb 1966, 1970] and a finite domain with

a simple boundary like rectangles [Golomb 1989, 1996].

Recently, researchers are interested in the problem of tiling a

finite domain (with a complex boundary) using a prescribed set of

polyominoes. One motivation is that polyomino tilings can be em-

ployed to produce recreational puzzles [Kita 2023; Kita and Miyata

2021; Lo et al. 2009]. A number of computational approaches have

been proposed for polyomino tiling. Knuth [2000] formulated poly-

omino tiling as an exact cover problem and proposed a recursive,

nondeterministic, backtracking algorithm called Algorithm X to find

all solutions to the problem. Garvie and Burkardt [2020] formulated

polyomino tiling as a binary linear programming problem, requiring

a known number of instances of each prescribed polyomino. Later,

they [Garvie and Burkardt 2022] combined the linear programming

approach with a divide-and-conquer strategy to improve the com-

putational efficiency. Misiak [2022] formulated polyomino tiling

as a boolean satisfiability problem, where the domain exact-cover

condition is translated into a set of boolean formulae.

All the above works take a forward tiling approach, assuming

a prescribed set of polyominoes as the given prototile set. How-

ever, prescribing a prototile set that can tile a 2D finite domain may

not be a tractable task, especially when using high-order polyomi-

noes. This is because the number of possible polyomino shapes

increases exponentially with the number of squares that the poly-

omino has [Barequet and Shalah 2022]. For example, the number of

free hexominoes (6 squares) is 35, whereas the number of free dode-

cominoes (12 squares) is 63,600 [Redelmeier 1981]. Compared with

forward tiling, our inverse tiling approach has twomajor differences.

First, it automatically discovers a set of tile shapes (i.e., prototiles)

to fit the input 2D finite domain, avoiding tedious trial-and-error

process of prescribing the prototile set. Second, it minimizes the

number of prototiles in the tiling, reducing the cost of realizing the

tiling result. These advantages are demonstrated with a quantitative

comparison shown in Figure 13.

Escherization. Escher tiling repeats one or few irregular but rec-

ognizable figures, such as animals and human faces, to tile the plane.

Escherization was initially termed by Kaplan and Salesin [2000] as a

problem of finding the shapemost similar to a given goal figure, such

that the shape can tile the plane. Later, the authors [2004] extended

their method to produce dual-shape Escher tilings using dihedral

tiling patterns. Recently, Liu et al. studied the problem of modeling

dual-shape Escher tilings from user-defined shapes while ensuring

these tilings are fabricable [Liu et al. 2020] and deployable [Liu et al.

2024]. Nagata and Imahori [2021] computed satisfactory Escher tile

shapes with natural deformations for fairly complex goal figures

using as-rigid-as-possible shape modeling. Please refer to [Nagata

and Imahori 2024] for a review of research works on Escher tiling.

Escherization is related to inverse tiling, since the Escher tile

shape(s) are computed instead of being prescribed. However, there

are twomajor differences. First, Escherization aims to tile the infinite

Euclidean plane, whereas inverse tiling aims to tile 2D finite do-

mains. Second, Escherization requires a known number of prototiles

(usually one or two) and the goal figure of each prototile is given,

while inverse tiling computes a minimized number of prototiles

from scratch for tiling an input finite domain.

3 Formulation of Inverse Tiling Problem

Given a 2D finite domain 𝐷 represented by a grid, our goal is to

compute a 𝐾-hedral tiling of the domain with minimized 𝐾 . To start,

we first provide a formal definition of the inverse tiling problem by

elaborating on its input, output, and requirements.

• Input.

(i) 2D finite domain 𝐷 . Domain 𝐷 is represented by a grid with a

closed boundary. Holes and disjoint regions are allowed in the

domain.

(ii) Total number of tiles. The total number of tiles is denoted as

𝑁 . In practice, 𝑁 is closely related to the cost of fabricating the

tiling and the time to assemble the tiling.

• Output.

(i) Prototile set. The set of prototiles is denoted as {𝑡𝑘 }𝐾𝑘=1, where
𝑡𝑘 is a prototile and 𝐾 is the total number of prototiles.

(ii) Number of instances of each prototile. The number of instances

of each prototile 𝑡𝑘 is denoted as 𝑛𝑘 , which should satisfy∑𝐾
𝑘=1

𝑛𝑘 = 𝑁 .

(iii) Transformation of each prototile instance. The 𝑗th instance of

prototile 𝑡𝑘 is denoted as tile 𝑡𝑘,𝑗 , 𝑗 ∈ {1, 2, ..., 𝑛𝑘 }. The place-
ment location, orientation, and reflection of each tile 𝑡𝑘,𝑗 in

domain 𝐷 is represented by a transformation denoted as 𝑇𝑘,𝑗 .

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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Fig. 3. Overview: our inverse tiling approach consists of two stages: (b-g) prototile set construction and (h) prototile set reduction. Given (a) input domain 𝐷 ,

we (b) initialize the prototile set with a single element (i.e., a monomino) and randomly distribute the prototile’s 𝑁 = 9 instances over the domain. We (c-g)

iteratively enlarge the tiles to cover a larger portion of the domain while maintaining congruence of the tile shapes whenever possible to minimize the number

of prototiles, until the domain is fully covered by the tiles. (h) We further reduce the number of prototiles by eliminating one prototile (in cyan) with a single

instance via locally re-tiling. Note that each prototile and its instances in a tiling state A𝑖 are rendered using the same color to show their correspondence.

• Requirements.

(i) Tileable domain. The computed tiles {𝑡𝑘,𝑗 } should exactly cover
domain 𝐷 without gaps or overlaps.

(ii) Minimizing the number of prototiles. The number of prototiles,

𝐾 , for tiling domain 𝐷 should be minimized.

(iii) Prototile size. To avoid prototiles that are too small or too

large, we specify a range [𝐶min,𝐶max] on the number of grid

cells occupied by each prototile produced by inverse tiling;

e.g., range [4, 6] for a square grid means that we take only

tetrominoes, pentominoes, and hexominoes as the prototiles.

(iv) Prototile shape. The prototile shape has to be simply connected,

according to the definition of tiling [Grünbaum and Shephard

2016]. Besides, we may optionally specify constraints on the

prototile shape, e.g., bounding box size𝑊bbox × 𝐻bbox where

𝑊bbox ≥ 𝐻bbox and convexity. Note that the convexity of a pro-

totile is measured using the ratio of the perimeter of the pro-

totile’s convex hull to the perimeter of the prototile itself [Sonka

et al. 2011]. Note that checking whether a prototile shape satis-

fies each of these constraints can be done by a polynomial-time

decision procedure.

4 Key Concepts in Inverse Tiling

Overview of our approach. Our inverse tiling approach consists

of two stages; see Figure 3 for a running example.

(1) Prototile set construction. At the beginning, the prototile set

is initialized with a single element (i.e., 𝐾 = 1), which is sim-

ply a monomino. We randomly distribute 𝑁 instances of the

monomino as seeds over domain 𝐷 ; see Figure 3(b). Next, we

progressively enlarge all the tiles congruently to cover a larger

portion of domain 𝐷 while maintaining 𝐾 = 1; see Figure 3(c).

Sometimes, enlarging all the instances of a prototile in a congru-

ent way is not possible; e.g., we cannot enlarge the bottom-right

tile in Figure 3(d), since all its adjacent grid cells are occupied.

In this case, we choose to enlarge a subset of the prototile’s

instances in a congruent way, resulting in an increase in the

Fig. 4. Three example abortive tiling states. (a) The two yellow tiles cannot

be enlarged. Their number of grid cells is less than the minimum allowed

number of grid cells𝐶min = 3. (b) The uncovered grid cell (in gray) cannot

be assigned to any tile without violating the maximum allowed number of

grid cells𝐶max = 5. (c) We cannot assign the uncovered grid cells without

violating the bounding box size constraint𝑊bbox = 3 and 𝐻bbox = 2.

number (𝐾 ) of prototiles by one; see Figure 3(d&e).We iteratively

perform this tile enlargement operation until all the grid cells in

domain 𝐷 are covered by the computed tiles; see Figure 3(g).

(2) Prototile set reduction. In practice, the constructed prototile set

may contain prototiles with few instances (e.g., 𝑛𝑘 = 1 or 2); see,

e.g., the cyan prototile with 𝑛𝑘 = 1 in Figure 3(g). Hence, we

propose to try to eliminate such prototiles via a local re-tiling,

aiming to reduce the number of prototiles; see Figure 3(h). In

the end, our approach outputs the prototile set {𝑡𝑘 }, number

of instances of each prototile {𝑛𝑘 }, and transformation of each

prototile instance {𝑇𝑘,𝑗 }.
Next, we introduce various concepts in our approach. First, we

introduce the abortive tiling state to motivate the search tree data
structure for prototile set construction. Then, we describe the tile
enlargement operation for prototile set construction, followed by

two requirements on this key operation.

Abortive tiling state. The iterative prototile set construction pro-

cess can be seen as a sequence of tiling states {A𝑖 }, where a tiling
state A𝑖 represents a (partial) covering of domain 𝐷 by instances

of the current set of prototiles. In particular, domain 𝐷 is the first

tiling state A0, in which all grid cells are not covered. Each iteration

of enlarging the tiles transits a tiling state A𝑖 to its next state A𝑖+1.
A tiling state A𝑖 is called an abortive tiling state if (i) there exists at

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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least one uncovered grid cell in domain 𝐷 ; and (ii) enlarging any

tile will violate the requirements on the prototile size and/or shape.

Figure 4 shows three typical cases of abortive tiling states.

Search tree for prototile set construction. Due to the existence of
abortive tiling states, given an arbitrary tiling state A𝑖 , we cannot
guarantee that it can always transit to the next valid (i.e., non-

abortive) tiling state A𝑖+1. Therefore, we propose to use a search

tree with backtracking to iterate through valid tiling states while

avoiding abortive tiling states for prototile set construction.

Our key idea is to build and maintain a tree data structure, where

the root node is the first tiling state A0 and each node in level 𝑖 > 0

represents a candidate of a tiling state A𝑖 . For each node in level

𝑖 , we generate a set of its childs denoted as {C𝑗 }, where C𝑗 is a
candidate of the next tiling state A𝑖+1. Our approach ranks these

candidate tiling states {C𝑗 } based on two criteria: (i) fewer number

of prototiles; and (ii) fewer number of uncovered grid cells, where

we prioritize the first criterion over the second one. In case no valid

child can be generated from a node in the tree, we backtrack the tree

to try other nodes without restarting the whole prototile set con-

struction process. We denote the size of {C𝑗 } as𝑚. A large𝑚 needs

more time to generate {C𝑗 } but offers more choices for ranking and

backtracking. We set𝑚 = 15 by default in our experiments.

Tile enlargement for prototile set construction. The key operation

in our approach is to enlarge the tiles in a tiling state A𝑖 to cover

more grid cells in domain 𝐷 in the next tiling state A𝑖+1. Impor-

tantly, the tile enlargement operation should satisfy requirements

(i)-(iv) of inverse tiling presented in Section 3. In particular, the last

two requirements on prototile size and shape are naturally satis-

fied, thanks to our iterative prototile set construction strategy (see

Section 5.1). For example, we can ensure that the shape of each en-

larged tile remains simply connected by including only uncovered

grid cell(s) adjacent to the tile; see Figure 3. However, the first two

requirements (i.e., tileable domain and minimizing 𝐾 ) are harder to

satisfy, since they are global requirements. Hence, we propose two

requirements on the (local) tile enlargement operation, helping to

meet the two (global) requirements of inverse tiling, respectively:

(i) Enlargeable tiles requirement. To meet the requirement of tileable

domain, our idea is to leave more space around the tiles, such that

we can make room to enlarge them in subsequent tiling states. This

idea is called the enlargeable tiles requirement. By this requirement,

we can reduce the chance of generating abortive tiling states, thus re-

ducing the number of backtracking needed. To this end, we propose

to distribute initial seed tiles more evenly (see Section 5.1). Also, we

propose to enlarge tiles in a way that the enlarged tiles still have

some adjacent grid cells un-

covered. The inset shows

a counter example, where

only half of the tiles are en-

largeable, and a desired ex-

ample, where all the tiles

are enlargeable.

(ii) Congruent tiles requirement. To help to minimize 𝐾 in the final

tiling result, we propose the following greedy strategies performed

at each tiling state.

Fig. 5. We show the blockability (𝑏) value (for 𝐼 = 2) of each uncovered grid

cell, enlargeability (𝑒) value of each tile, and enlargeability (𝑒) value of each

prototile, for a tiling state with 3 tiles and 2 prototiles.

(1) Constructing congruent tiles. For each prototile 𝑡𝑘 in state A𝑖 , we
try to enlarge all its instances congruently whenever possible,

since doing so keeps the number of prototiles unchanged in

state A𝑖+1; see Figure 3(c&d). Otherwise, we enlarge a subset of
prototile 𝑡𝑘 ’s instances congruently; see Figure 3(d&e).

(2) Matching existing prototiles. For a small prototile 𝑡𝑘 in state A𝑖 ,
we try to enlarge it, so that the enlarged prototile 𝑡𝑘 has the same

shape as an existing prototile 𝑡 𝑗 in state A𝑖 , aiming to reduce

the number of prototiles by one in state A𝑖+1. If this cannot be
achieved, we try to enlarge the small prototile 𝑡𝑘 such that its

whole shape matches part of an existing large prototile 𝑡 𝑗 . By

doing so, prototile 𝑡𝑘 may have the same shape as prototile 𝑡 𝑗
after a few more tile enlargement operations on 𝑡𝑘 .

5 Inverse Tiling Approach

We present our two-stage inverse tiling approach by composing the

concepts in Section 4, where the prototile set construction is the

main stage and the prototile set reduction is an optional stage. The

main stage enables efficiently solving the inverse tiling problem by

significantly reducing the search space; see Supp. 2 for an analysis.

5.1 Stage 1: Prototile Set Construction

5.1.1 Initializing Tiles. To initialize 𝑁 tiles in the input domain

𝐷 , we pick 𝑁 grid cells as seeds in the domain using Poisson disk

sampling to meet the enlargeable tiles requirement, where each

initial tile occupies a single seed grid cell; see Figure 3(a&b). Our im-

plementation uses a dart-throwing process [Lagae and Dutré 2008]

to iteratively generate seeds. At each iteration, we randomly select

an uncovered grid cell as a seed candidate and check if it satisfies

the requirement of the minimum distance between existing seeds,

in which the minimum distance is set to

√︁
𝑀/𝑁 by default and𝑀

is the total number of grid cells in the domain. If the seed candidate

does not satisfy the requirement, we discard it and generate another

candidate until the distance requirement is satisfied.

An alternative approach to generating seeds is to regularly or

semi-regularly distribute seeds over the input domain 𝐷 . Taking the

square-grid domain as an example, the number of seeds is controlled

by two parameters, i.e., the horizontal and vertical distances between

adjacent seeds. We found that this alternative approach works well

in practice, especially when the input domain has a regular shape.

However, this approach may not be able to generate exactly 𝑁 seeds

for a given input domain.
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Fig. 6. Enlarging part of the tiles congruently. We first (a) select prototile

𝑡en (in green color) from existing prototiles {𝑡𝑘 }, and then select prototile

instance 𝑡en,ref as the reference tile. Next, we (b) enlarge the reference tile

𝑡en,ref to form the target tile 𝑡 ′
en,ref

(in yellow color) by including an adjacent

uncovered grid cell. We further (c) try to enlarge each of the remaining

instances of the prototile 𝑡en to make it have the same shape as the target

tile 𝑡 ′
en,ref

.

5.1.2 Enlarging Tiles. For a tiling state A𝑖 , we enlarge all or part
of the tiles in a congruent way to transit to the next tiling state

A𝑖+1. To meet the enlargeable tiles requirement, our idea is that the

enlargement of a tile should minimize its potential blocking impact

to its neighboring tiles. Hence, we propose the blockability measure

for uncovered grid cells and the enlargeability measure for tiles and

prototiles, such that we later can use these measures to guide the

tile enlargement operation. All the measures are computed once for

each tiling state A𝑖 :

(i) Blockability of an uncovered grid cell. We compute the blocka-

bility value denoted as 𝑏 (𝑥) for an uncovered grid cell 𝑥 as

𝑏 (𝑥) = number of tiles

intersecting with 𝐼 -ring grid cell neighborhood of 𝑥, (1)

where 𝐼 is set to 3 in our implementation, but can be adjusted ac-

cording to the size of the input domain. Note that we consider edge-

sharing but not corner-sharing when locating grid cell neighbors

using a breadth-first search. Figure 5 visualizes the blockability of

uncovered squares for 𝐼 = 2. In our approach, we prioritize choosing

uncovered grid cells with low blockability for enlarging tiles.

(ii) Enlargeability of a tile. The enlargeability of a tile 𝑡𝑘,𝑗 in a

tiling state is computed as

𝑒 (𝑡𝑘,𝑗 ) =
∑︁

𝑥𝑢 ∈ adjacent_uncovered(𝑡𝑘,𝑗 )

1

𝑏 (𝑥𝑢 )
, (2)

where 𝑥𝑢 is an uncovered grid cell adjacent to tile 𝑡𝑘,𝑗 and 𝑏 (𝑥𝑢 ) is
the blockability value of 𝑥𝑢 . Since tiles with low enlargeability are

likely to be blocked by other tiles, we prioritize to choose them for

performing the enlargement operation.

(iii) Enlargeability of a prototile. For each prototile 𝑡𝑘 , its enlarge-

ability is computed as

𝑒 (𝑡𝑘 ) =
1

𝑛𝑘

∑︁
𝑗

𝑒 (𝑡𝑘,𝑗 ) (3)

where tile 𝑡𝑘,𝑗 is the 𝑗 th instance of prototile 𝑡𝑘 and 𝑛𝑘 is the number

of instances of prototile 𝑡𝑘 ; see Figure 5 for examples.

Fig. 7. Re-tiling a local region to reduce the number of prototiles. (Left) We

first select prototile 𝑡loc (in blue) that has a single instance, and then identify

a region 𝐷loc around its instance (with a red boundary). (Right) Next, we

re-tile region 𝐷loc using a modified version of the prototile set construction

method, guided by the prototiles of remaining domain 𝐷rem = 𝐷 − 𝐷loc.

Generating candidates of the next tiling state. Given a tiling state

A𝑖 , to proceed to the next tiling state A𝑖+1, we build the search tree

by generating a set of candidates of A𝑖+1 and choose among the

candidates based on the two criteria presented in Section 4. The

candidate generation procedure has the following four steps; please

refer to Supp. 3 for details.

(i) Selecting a prototile 𝑡en. We select a prototile, say 𝑡en, from the

current set of prototiles {𝑡𝑘 } for enlarging its tiles (prototile in-
stances) based on the following three criteria (see Figure 6(a)):

small prototile size, a large number of prototile instances, and

low enlargeability.

(ii) Selecting a prototile instance 𝑡en, ref. After choosing prototile
𝑡en, we further pick one of its instances, say 𝑡en, ref, to form a

reference tile; see Figure 6(a). We prioritize selecting 𝑡en, ref as

a prototile instance with low enlargeability.

(iii) Determining the target tile 𝑡 ′en, ref. After choosing prototile

instance 𝑡en, ref, we determine the shape of target tile 𝑡 ′
en, ref

to make it either match an existing prototile or part of an

existing prototile, guided by the congruent tiles requirement.

If this cannot be achieved, we determine the shape of target

tile 𝑡 ′
en, ref

by assigning an adjacent uncovered grid cell with

low blockability to tile 𝑡en, ref; see Figure 6(b).

(iv) Enlarging the prototile instances {𝑡en, 𝑗 }. Once the shape of

target tile 𝑡 ′
en,ref

is determined, we try to enlarge each of the

remaining prototile instances in {𝑡en, 𝑗 } to make it have ex-

actly the same shape as 𝑡 ′
en, ref

, to meet the congruent tiles

requirement; see Figure 6(c).

If the attempt to generate a set of candidates of the next tiling

state leads to an empty set, our algorithmwill backtrack to an earlier

tiling state in the search tree.

5.2 Stage 2: Prototile Set Reduction

Tiling results generated by the prototile set construction stage in

Section 5.1 may contain prototiles with few instances. In the pro-

totile set reduction stage, we locally re-tile the result to attempt to
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Fig. 8. Tiling results produced by our approach on input square-grid domains of various shapes, from left to right: Umbrella, Robot, Deer, Mega Man,

Flower, and Mario.

Fig. 9. Tiling results produced by our approach on input domains represented by different kinds of grids, from left to right: a triangle, hexagon, rhombus,

square-triangle, and octagon-square grid.

eliminate such prototiles, aiming to reduce the size of the prototile

set. We design the local re-tiling operation as follows:

(i) Select a prototile. We select a prototile, say 𝑡loc, with 𝑛loc ≤ 3,

where 𝑛loc is the number of instances of the prototile; see

Figure 7 (left) for an example.

(ii) Identify the associated region. We split domain 𝐷 into two

regions 𝐷loc and 𝐷rem. 𝐷loc includes all instances of prototile

𝑡loc and the one-ring tile neighbors of each instance, whereas

𝐷rem = 𝐷 − 𝐷loc, which denotes the remaining region in do-

main 𝐷 . Note that region 𝐷loc may be disconnected, since

prototile 𝑡loc may have more than one instance (i.e., 𝑛loc > 1).

(iii) Re-tile the region. We re-tile region 𝐷loc using a modified

version of the prototile set construction method in Section 5.1,

in which we prioritize enlarging tiles {𝑡 loc
𝑘,𝑗

} in region 𝐷loc to

match the prototiles in the remaining domain 𝐷rem.

(iv) Confirm the re-tiling. We accept the re-tiling on the original

tiling result, if the number of prototiles of the entire domain

𝐷 is reduced. Otherwise, we undo the re-tiling.

We iterate the local re-tiling operation until the number of pro-

totiles of domain 𝐷 cannot be reduced. Figure 7 shows an example

tiling result before and after the local re-tiling operation, where the

number of prototiles is reduced by one.

6 Results

We implemented our inverse tiling approach in C++ and ran it

on a desktop computer with 3.6GHz 8-Core Intel processor and

16GB RAM. To generate a tiling result, we need to specify the input

domain 𝐷 (with𝑀 grid cells) and the number of tiles 𝑁 . Also, the

prototile size constraint [𝐶min,𝐶max] is set as 𝐶min = ⌊𝛼min𝑀/𝑁 ⌋
and 𝐶max = ⌈𝛼max𝑀/𝑁 ⌉, where 𝛼min and 𝛼max are constants set as

0.8 and 1.2, respectively, by default. For each result, we produce

the computed prototiles {𝑡𝑘 } and a tiling of the input domain by

{𝑡𝑘 }. To present the results, each prototile 𝑡𝑘 is colored based on

its number of instances 𝑛𝑘 : green for the largest 𝑛𝑘 , yellow for the

second-largest, purple for the third, and so on.

Tiling results. We tested our inverse tiling approach on input

domains of various shapes represented by a square grid in Figure 8

and on input domains represented by different kinds of grids (with

one or two unique cells) in Figure 1 and 9. For each of these results,

our approach computes a small number of prototiles (e.g., 𝐾 ≤ 9)

to tile the input domain; see Table 1 for the statistics and timings

of these results. Our inverse tiling approach allows to tile an input

domain with a disconnected shape, and to control the shape (e.g.,

convexity and bounding box) of the generated prototiles; please

refer to Supp. 4 for more tiling results. The accompanying video

visualizes the inverse tiling process of some results.
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Table 1. Statistics and timings. We report the input domain, grid type,

number of grid cells in the domain (𝑀), number of tiles (𝑁 ), prototile size

constraint ([𝐶min,𝐶max ]), number of prototiles before local re-tiling (𝐾constr),

number of prototiles in the tiling result (𝐾 ), average number of instances

of each prototile (𝑁 /𝐾 ), timings for running stage 1 in Section 5.1 (𝑇constr),

stage 2 in Section 5.2 (𝑇reduce), and the whole method in Section 5 (𝑇total).
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Fig. 10. Experiment to evaluate the scalability of our inverse tiling approach

for tiling Bunny in different resolutions. We compare our approach (in

solid curves) with a baseline approach (in dashed curves) that uses our

computational framework without our proposed strategies.

Evaluating scalability of our approach. We conducted an experi-

ment to evaluate the scalability of our inverse tiling approach by

comparing it with two baseline approaches. In this experiment, the

task is to find 𝐾-hedral tilings of Bunny in different resolutions

(i.e., different numbers (𝑀) of grid cells). The first baseline is a ran-

domized search of all possible partitions of the input domain into

𝑁 pieces (i.e., tiles) to find the 𝐾-hedral tiling result. Due to the

huge search space (i.e., 𝑂 (𝑁𝑀 )), this approach can only find tiling

results for small 𝑀 and 𝑁 . The second baseline is a randomized

search within our computational framework, where the proposed

strategies (i.e., blockability and enlargeability in Section 5.1) are

disabled. Figure 10 shows that our approach is more scalable with

respect to𝑀 (i.e., the input domain size), thanks to the framework

in Section 4 and the strategies in Section 5.1. Please refer to Supp. 5

for associated visual results and statistics of this experiment.

Fig. 11. Experiment to evaluate the performance of our inverse tiling ap-

proach in terms of minimizing the number (𝐾 ) of prototiles by comparing

our tiling results (bottom) with the ground-truth results with a minimal 𝐾

(top), from left to right: Coin, House, and Teapot. From left to right, the time

taken to generate the ground-truth results is 0.02, 0.78, and 2.74 minutes

while the time taken to generate our corresponding results is 0.11, 2.31, and

15.35 minutes, respectively.

This experiment fixes the input domain shape, i.e., Bunny. In

practice, we observed that the scalability of our approach with

respect to the number (𝑁 ) of tiles is closely related to the complexity

of the input domain shape. In detail, an input domain with more

intricate shape (e.g., complex boundary, many holes in the domain)

typically makes our approach less scalable with respect to 𝑁 .

Evaluating 𝐾 minimization of our approach. We conducted an ex-

periment to evaluate the performance of our inverse tiling approach

in terms of minimizing the number (𝐾 ) of prototiles by comparing

our results with ground truths. In this experiment, the task is to tile

each of the three input domains (i.e., Coin, House, and Teapot)

using tetrominoes (4 squares) and/or pentominoes (5 squares). Fig-

ure 11 shows the ground truth and our result for each domain. We

can see that our inverse tiling approach is able to find the minimal

𝐾 for Coin (𝐾 = 1) and House (𝐾 = 2), and a minimized 𝐾 that

is close to the ground truth for Teapot (𝐾 = 4 vs 𝐾 = 3). Please

refer to Supp. 6 for details of this experiment, including how the

ground-truth result is computed.

Comparison with forward tiling approaches. We compare our in-

verse tiling approach with three forward tiling approaches [Mišiak

2022] (i.e., backtracking (BT), integer linear programming (ILP), and

boolean satisfiability (SAT)) in terms of minimizing the number of

prototiles. There are three tasks in this experiment, i.e., tiling the

Bunny with three different prototile size constraints [𝐶min,𝐶max]:
[2, 5], [5, 8], and [8, 11]. For a fair comparison, the sets of allowable

tile shapes are formed by enumerating polyominoes that satisfy the

prototile size constraint for each task, resulting in sets of 20, 517, and

22165 allowable tile shapes, respectively. For each task, we ran each

of the three forward tiling approaches as well as our inverse tiling

approach for at most 24 hours. Figure 13 reports the computation
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Fig. 12. Tiling results with 𝑁 = 39 tiles and 𝐾 = 15 prototiles produced by our inverse tiling approach on E, an input domain with𝑀 = 390 grid cells, under

different prototile size constraints (see the top row in the table). Note that our approach was not able to generate a complete tiling result with 𝐾 = 15 prototiles

within 24 hours when the prototile size constraint is too restrictive (i.e.,𝐶min =𝐶max = 10); see the leftmost for a failure case (i.e., an abortive tiling state) with

3 uncovered grid cells.

Fig. 13. Comparing our inverse tiling approach (bottom) with three for-

ward tiling approaches for tiling Bunny under three different prototile size

constraints. An empty table cell means the approach cannot find a tiling

solution for that task within 24 hours.

time, number of tiles 𝑁 , and number of prototiles 𝐾 , for each tiling

solution. Compared with the three forward tiling approaches, our

Fig. 14. 2D assembly puzzles designed using our inverse tiling approach. The

level of difficulty of the puzzles is related to (a&c) the number (𝑁 ) of tiles,

(a&b) number (𝐾 ) of prototiles, and (d&e) grid type (square vs hexagon).

For each puzzle, we show its component pieces and assembled shape.

inverse tiling approach is able to generate solutions for all the three

tasks, demonstrating the scalability of our approach with respect to

the number of allowable tile shapes. Moreover, for each task, our

inverse tiling approach is able to generate a tiling solution with the

smallest number of prototiles, showing the superior performance of

our approach in terms of minimizing 𝐾 .

Application to puzzles. Our inverse tiling approach can be used

to design 2D assembly puzzles, where many puzzle pieces have

congruent shapes. We fabricated our tiling results using 3D print-

ing and painted the fabricated tiles with the same shape using the

same color; see Figure 14. We conducted an informal user study,
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in which six participants were asked to play with the five puzzles

by assembling the tiles to form the target shape. The participants

solved most puzzles within 10 to 50 minutes. We observed that a

puzzle’s level of difficulty is related to the number of pieces (i.e.,

number of tiles 𝑁 ), number of distinct pieces (i.e., number of pro-

totiles 𝐾 ), and grid types (square grid vs hexagon grid). Our inverse

tiling approach allows controlling all these aspects, enabling one to

design a personalized puzzle with varying levels of difficulty. Please

refer to Supp. 7 for details about the user study.

Limitations. Our inverse tiling approach has some limitations.

First, our approach may not be able to generate a 𝐾-hedral tiling

result when the constraints specified on the prototile size/shape

are too restrictive. Figure 12 (leftmost) shows a failure example

of our approach when searching for a tiling result under a very

tight constraint on the prototile size (i.e., 𝐶min = 𝐶max = 10). This

issue can be alleviated by relaxing the constraints on the prototile

size/shape; see Figure 12. Second, our approach may fail to gen-

erate tiling results with a small number of prototiles for input do-

mains that do not have a large internal area since enlarging tiles

congruently may easily fail on such domains; see the inset (left)

for an example. Third, our approach lacks an understanding of

the input domain’s global shape

properties such as symmetry.

Hence, it is not able to leverage

these global shape properties

for minimizing the number of

prototiles; see the inset (right)

for an example where a 𝐾 = 1

tiling result exists.

7 Conclusion

This paper presents inverse tiling of 2D finite domains, a new per-

spective to creating 𝐾-hedral tilings, where the tile shapes are in-

versely modeled to fit the input domain rather than being prescribed.

To minimize the number (𝐾) of prototiles, our approach first con-

structs a small prototile set and then further reduces the set. Ex-

perimental results show that our inverse tiling approach is able to

tile domains of various shapes and forms. Comparisons with for-

ward tiling approaches show that our inverse tiling approach is able

to generate tiling results with a smaller prototile set and is more

scalable with respect to the number of allowable tile shapes.

Future work. Our work opens up many interesting directions for

future research. First, our inverse tiling approach can be generalized

for Escherization by adding figures to the generated tiles. Second,

our approach focuses on the problem of tiling 2D finite domains. In

the future, we would like to generalize our approach to tile 3D finite

domains such as voxelized shapes. Third, we plan to study applying

inverse tiling for rationalization of architecture, by modeling archi-

tectural assemblies composed of parts with congruent shapes [Chen

et al. 2023]. Lastly, we are interested in extending our inverse tiling

approach to model layouts with deformable prototiles [Peng et al.

2014] and exploring its applications in urban layout design and

pattern generation [Jiang et al. 2015].
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