
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 1

Modeling Wireframe Meshes with Discrete
Equivalence Classes

Pengyun Qiu∗ ID , Rulin Chen∗ ID , Peng Song ID , and Ying He ID

Abstract—We study a problem of modeling wireframe meshes
where the vertices and edges fall into a set of discrete equivalence
classes, respectively. This problem is motivated by the need of
fabricating large wireframe structures at lower cost and faster
speed since both nodes (thickened vertices) and rods (thickened
edges) can be mass-produced. Given a 3D shape represented as
a wireframe mesh, our goal is to compute a set of template
vertices and a set of template edges, whose instances can be used
to produce a fabricable wireframe mesh that approximates the
input shape. To achieve this goal, we propose a computational
approach that generates the template vertices and template edges
by iteratively clustering and optimizing the mesh vertices and
edges. At the clustering stage, we cluster mesh vertices and
edges according to their shape and length, respectively. At the
optimization stage, we first locally optimize the mesh to reduce
the number of clusters of vertices and/or edges, and then globally
optimize the mesh to reduce the intra-cluster variance for vertices
and edges, while facilitating fabricability of the wireframe mesh.
We demonstrate that our approach is able to model wireframe
meshes with various shapes and topologies, compare it with three
state-of-the-art approaches to show its superiority, and validate
fabricability of our results by making three physical prototypes.

Index Terms—Wireframe structure, mesh optimization, hier-
archical clustering, discrete equivalence classes, rationalization

I. INTRODUCTION

Awireframe structure is made up of nodes and rods,
where multiple rods are joined together at each node.

Wireframe structures are materially efficient and lightweight,
making them widely used in many fields, such as art, sculpture,
and architecture [1]. Wireframe structures generally have a
mesh-like pattern and are modeled as wireframe meshes,
where nodes and rods are thickened mesh vertices and edges,
respectively. Traditionally, both nodes and rods in a wireframe
structure are custom manufactured due to their distinct shapes.

In this paper, we study a new problem of modeling wire-
frame meshes where the vertices and edges fall into a set
of discrete equivalence classes, respectively. Such wireframe
meshes make it possible to fabricate large wireframe structures

∗ joint first authors.
Manuscript received 16 July 2024; revised 30 March 30 2025; accepted

April 9, 2025. This work was supported by the Singapore MOE AcRF Tier 2
Grant (MOE-T2EP20123-0016) and the Singapore MOE AcRF Tier 1 Grant
(RT19/22).

Pengyun Qiu, Rulin Chen, and Peng Song are with Singapore University of
Technology and Design, Singapore (e-mail: qq475127379@gmail.com, rulin -
chen@sutd.edu.sg, peng song@sutd.edu.sg).

Ying He is with Nanyang Technological University, Singapore. (e-mail:
yhe@ntu.edu.sg).

at lower cost and faster speed since both the nodes and rods
can be mass-produced, e.g., by molding and cutting, respec-
tively. Moreover, fewer number of distinct shapes of nodes and
rods also simplify the assembly process and ease maintenance
of the assembled structure. However, this modeling problem
is non-trivial due to two challenges. First, the geometry of the
vertices and edges has to be optimized at the same time to
make them fall into discrete equivalence classes while main-
taining their connectivity in the mesh. Second, both vertices
and edges must satisfy geometric constraints for fabrication
since nodes (thickened vertices) and rods (thickened edges)
should not collide one another in an assembled structure. In
recent years, researchers have studied a simplified version of
the problem, i.e., modeling wireframe meshes with discrete
equivalence classes of vertices [2], [3], but their approaches
cannot be easily extended to address the above two challenges.

Given a 3D shape represented as a wireframe mesh, our
goal is to compute a set of template vertices and a set of
template edges, whose instances can be used to produce a
fabricable wireframe mesh that approximates the input shape.
To achieve this goal, we propose a computational approach that
generates the template vertices and template edges by itera-
tively clustering and optimizing the mesh vertices and edges.
At the clustering stage, we cluster mesh vertices according to
the vertex shape defined by the vertex’s incident edges and
cluster mesh edges according to the edge length. In particu-
lar, we perform the vertex/edge clustering using hierarchical
clustering, allowing to automatically find a suitable number of
clusters. At the optimization stage, we first locally optimize the
mesh to reduce the number of clusters of vertices and/or edges
and then globally optimize the mesh to reduce the intra-cluster
variance for the vertices and edges. Specifically, we make two
technical contributions:
• We propose a computational framework to model wire-

frame meshes with discrete equivalence classes via itera-
tively clustering and optimizing mesh vertices and edges
simultaneously.

• We propose a local-global optimization scheme to mini-
mize the number of clusters of mesh vertices and edges,
respectively, while facilitating fabricability of the mesh
and preserving its shape and features.

We demonstrate that our approach is able to model wire-
frame meshes with discrete equivalence classes for approx-
imating surfaces with various shapes and topologies, and
compare it with three state-of-the-art approaches [4], [2], [3] to
show its superiority in reducing the number of distinct vertices

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0009-6090-0258
https://orcid.org/0000-0002-9981-2468
https://orcid.org/0000-0003-2734-2783
https://orcid.org/0000-0002-6749-4485
https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 2

Fig. 1. An IGLOO surface with an original mesh containing 196 vertices and 364 edges optimized to 14 classes of vertices and 30 classes of edges using
our approach. Left: a rendering of our optimized wireframe mesh, where vertices and edges in the same class are rendered with the same color, respectively.
Middle: fabricating the wireframe mesh with 3D printed nodes and precision-cut wooden rods. Right: (top) nodes and rods of the same class are clustered
together, and (bottom) a close-up view of the assembled nodes and rods.

and edges while preserving the input shape. We validate
fabricability of our modeled wireframe meshes by making
three physical prototypes with 3D printed nodes and precision-
cut rods; see Figure 1 for an example.

II. RELATED WORK

Fabricating wireframe meshes. Fabrication of wireframe
meshes using common 3D printers, which print layer-by-
layer, results in slow fabrication and low-quality prints. To
address this limitation, researchers proposed methods to fabri-
cate wireframe meshes using a custom-built 3D printer that
extrudes filament directly in 3D space [5], a 5-DOF 3D
printer (3 for translation and 2 for rotation) [6], and a 6-
axis robotic arm with a customized extrusion head [7]. To
fabricate wireframe meshes in a larger scale, an assembly-
based method is typically used where vertices and edges are
fabricated separately and then assembled to form the final
structure. Richter and Alexa [8] proposed beam meshes, which
are meshes with torsion-free edges, to approximate a given 3D
shape, and fabricate both mesh vertices and edges using laser-
cutting. Another common approach is to fabricate wireframe
meshes as node-rod wireframe structures, where each node is
3D printed and each rod is fabricated by precision-cut [9],
[10], [11].

Modeling wireframe meshes with discrete equivalence
classes. A space frame structure or a space truss is an
assembly of beams connected by nodes [1]. In recent years,
there has been a research interest in rationalizing space frame
structures by reducing the number of distinct nodes [12] or
distinct beams [13], [14].

Wireframe structures are a specific kind of space frame
structures whose shape can be represented as a manifold
mesh. Two recent works [2], [3] succeed in rationalizing
wireframe structures to reduce the number of distinct nodes by
modeling wireframe meshes with discrete equivalence classes
of vertices. They first define a metric to compare the shapes of
different vertices, cluster all the vertices in a mesh based on
the metric, and further perform local perturbation [2] or global
optimization [3] on the mesh geometry until the shape variety
of vertices in each cluster is under an acceptable tolerance.
Compared to these two works, we address a new problem of
modeling wireframe meshes with discrete equivalence classes

of both vertices and edges, incorporate fabrication constraints
in the mesh optimization, and enable automatic determination
of the number of classes. In addition, quantitative comparisons
show that our approach is able to achieve better performance
than [2], [3] in terms of reducing the number of distinct
vertices; see Section VIII.

Another way to rationalize wireframe structures is to use
the Zometool construction set, which consists of nine tem-
plate struts of different lengths and one universal node. The
universal node is a slightly modified rhombicosidodecahedron
with 62 slots, and only a few slots of each node are actually
used for connecting struts in Zometool meshes. Zimmer and
Kobbelt [15] proposed an advancing-front approach to approx-
imate a freeform disk-topology surface using the Zometool
construction set. To approximate a freeform surface with a
more complex topology, Zimmer et al. [4] proposed an opti-
mization approach that iteratively applies a set of local mesh
modification operators on an initial Zometool mesh computed
from a voxelization of the input shape. One limitation of this
class of approaches is that the predefined template struts and
universal node restrict 3D shapes that can be represented by
these parts; see Section VIII for a quantitative comparison
between our approach and the Zometool shape approxima-
tion [4].

Modeling polygonal surfaces with discrete equivalence
classes. This family of works models freeform surfaces
with discrete equivalence classes of polygons. Some research
works compute a small set of template triangles [16], [17],
[18], quads [19], or polygons [20] and use instances of these
templates to approximate a given freeform surface, while
others make use of a predefined set of template triangles [21]
or quads [22] to model a variety of surfaces. Instead of reusing
polygons (without thickness), computational approaches have
been developed to model template shell blocks (with thick-
ness), whose instances can be used to approximate an archi-
tectural surface [23] or an organic shape [24]. Beyond direct
reuse of polygons or blocks, researchers have also computed
reusable molds for fabricating an architectural surface with
curved panel elements [25] or triangle-based point-folding
elements [26], where elements of the same shape are fabricated
with molding and then cut into different sizes and forms for
making the surface.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 3

Fig. 2. Modeling (right) a wireframe structure from (left) a wireframe mesh
by thickening both mesh vertices and edges.

III. PROBLEM FORMULATION

Our input is a 3D shape represented as a triangle mesh,
denoted as P. Our goal is to model a fabricable polygonal
mesh M to approximate the shape P, where the vertices and
edges fall into discrete equivalence classes, respectively. We
begin by describing the modeling of a wireframe structure for
fabricating a wireframe mesh M. Subsequently, we introduce
geometric constraints on the mesh M to facilitate its fabrica-
bility. Following this, we outline our problem formulation of
modeling wireframe meshes with discrete equivalence classes
of vertices and edges.

Modeling wireframe structures. To fabricate a wireframe
mesh M, we model a wireframe structure S from the mesh;
see Figure 2. For each edge in the mesh, we model a rod as a
cylinder centered at the edge with radius w. For each vertex in
the mesh, we model a node as a sphere with radius R centered
at the vertex. The sphere has m cylindrical holes, where m is
the vertex valence; see Figure 3. Each cylindrical hole and the
corresponding rod end form a friction joint for connecting the
rod with the node. The radius of each hole is set as w. The
depth of each hole is R− r, where r is typically set as 0.4R.
The length of each rod is l − 2r, where l is the length of the
corresponding mesh edge. This is because mesh edges meet
exactly at a mesh vertex but rods meet at a spherical surface
in the node with radius r.

In this paper, we make the following assumptions for the
rods, nodes, and cylindrical holes in a wireframe structure:
1) all rods have a uniform cross section with radius w; 2) all
nodes have a consistent radius R; and 3) all cylindrical holes in
the nodes have the same depth R− r. Given these conditions,
the geometry of wireframe structure S is precisely determined
by the geometry of the wireframe mesh M, including the shape
of each mesh vertex (i.e., vertex valence and its incident edges)
and length of each mesh edge.

Fabrication constraints. To ensure that each node is usable
in practice, cylindrical holes in the node should not intersect
with one another; see again Figure 3. This constraint is
formulated as:

θ > 2 arctan
w

r
(1)

where θ is the angle between center lines (i.e., mesh edges) of
the two cylindrical holes. In the mesh M, any pair of edges
joining at a vertex should satisfy Equation 1.

Fig. 3. Modeling the geometry of a node corresponding to a mesh vertex with
valence 5, where the vertex is at the center of the node and each incident edge
defines a cylindrical hole on the node. A cross-section of the node is shown on
the right, where the cross-section plane passes through two cylindrical holes
on the node.

In a wireframe structure, it is essential that any pair of
nodes connected by a rod does not collide with each other;
see Figure 2 (right). This constraint is formulated as:

l > 2R (2)

where l is the length of a mesh edge. All edges in the mesh
M must satisfy Equation 2.

In the mesh M, only vertices with the same valence can
potentially fall into the same discrete equivalence class. Hence,
to reduce the number of distinct vertices, we aim for the
valence m of each vertex to be as close as possible to the
optimal value moptim of mesh M, which is 6 in the interior
and 4 on the boundary for triangle meshes.

Modeling wireframe meshes with discrete equivalence
classes. To reduce the cost and time of fabricating mesh
M, the vertices and edges in mesh M should be grouped
into discrete equivalence classes, respectively. We denote the
number of discrete equivalence classes of vertices and edges
as Kv and Ke, respectively. We consider a subset of vertices
{vk,i} to fall into the same discrete equivalence class if

Dv(vk,i, v̄k) < εv, ∀i (3)

where Dv is a shape dissimilarity metric of two vertices
(defined in Section V), v̄k is the centroid vertex of the class,
and εv is tolerance on the vertex shape dissimilarity. Similarly,
a subset of edges {el,j} falls into the same discrete equivalence
class if

De(el,j , ēl) < εe, ∀j (4)

where De is a length dissimilarity metric of two edges (defined
in Section V), ēl is the centroid edge of the class, and εe is
tolerance on the edge length dissimilarity.

Modeling of a wireframe mesh M with discrete equivalence
classes should fulfill the following requirements:

1) Shape closeness. The geometry of the mesh M should
closely approximate the input shape P, particularly for
shape features.

2) Mesh fabricability. The mesh M should adhere to the
fabrication constraints described in Equations 1 and 2.

3) Discrete equivalence class of vertices. Vertices in
each discrete equivalence class should have very similar
shapes by satisfying Equation 3.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 4

4) Discrete equivalence class of edges. Edges in each dis-
crete equivalence class should have very similar lengths
by satisfying Equation 4.

5) Distinct vertices. The total number of discrete equiva-
lence classes of vertices, Kv , should be small.

6) Distinct edges. The total number of discrete equivalence
classes of edges, Ke, should be small.

Our wireframe mesh modeling process outputs a set of
template vertices {v̄k}, k ∈ [1,Kv] and a set of template edges
{ēl}, l ∈ [1,Ke], where a template vertex v̄k (a template edge
ēl) is the centroid vertex (edge) of each discrete equivalence
class. These template vertices and edges will be thickened
to form template nodes and rods, respectively. Instances of
these template nodes and rods will be fabricated and assembled
to build a wireframe structure S that approximates the input
shape P.

IV. COMPUTATIONAL FRAMEWORK

The problem of modeling wireframe meshes with discrete
equivalence classes formulated in Section III is highly non-
trivial due to large discrete-continuous search space (i.e., mesh
topology and geometry) as well as many requirements on the
mesh vertices and edges. To address this challenging problem,
we propose a computational framework with two stages: mesh
initialization that determines mesh topology and provides
initial mesh geometry, and mesh clustering-and-optimization
on the mesh vertices and edges to satisfy the requirements in
Section III.

Mesh initialization. The input triangle mesh P typically
contains an excess number of vertices and is not fabricable;
see Figure 4 (left) for examples. Hence, we first initialize a
fabricable mesh M by remeshing mesh P; see Figure 4 (right).
Users are allowed to specify a desired number of vertices for
mesh M. In case mesh P has salient shape features, users are
allowed to identify these features interactively by brushing
the feature vertices. More advanced methods such as [27] can
also be employed to identify the features automatically. The
objectives of our remeshing are to:

• Remove angles in the mesh that are too small (see
Equation 1).

• Remove edges in the mesh that are too short (see Equa-
tion 2) or too long.

• Remove vertices whose valence is far from the optimal
value moptim.

• Reduce the total number of mesh vertices to approxi-
mately match the user-specified number.

• Preserve salient shape features during remeshing.
In general, we solve the mesh initialization problem by

using the adaptive remeshing algorithm in [28], where the
initialized mesh M is still a triangle mesh; see Figure 4 (top).
The key idea in [28] is to replace the constant target edge
length in [29] by an adaptive sizing field L(xi) to guide the
remeshing process, where xi is a vertex on the input mesh P.
To avoid too short or too long edges in the mesh, the adaptive
sizing field L(xi) is clamped to user-specified bounds, such
that L(xi) ∈ [Lmin, Lmax]. To control the number of vertices

Fig. 4. Initialization of a fabricable mesh via (top) adaptive remeshing a
surface or (bottom) mapping a 2D tessellation (in cyan color) onto an open
surface.

in the remeshing result, the lower bound Lmin is adjusted,
where a larger lower bound corresponds to a smaller number
of vertices.

For an open input mesh P, we provide an alternative ap-
proach to solving the mesh initialization problem. In detail, we
first parameterize the input mesh P (e.g., using a as-similar-
as-possible mapping [30]) and then map a 2D regular or
semi-regular tessellation onto the 3D surface P; see Figure 4
(bottom). A mesh M initialized by this approach is a polygonal
mesh, and its topology is defined by the 2D tessellation. In
practice, we opt for 2D tessellations that incorporate triangles
and/or quads since wireframe structures composed of those
shapes tend to exhibit higher structural stability.

After the remeshing, the initialized mesh M satisfies re-
quirements 1 and 2 in Section III. We further perform mesh
clustering-and-optimization to satisfy the remaining require-
ments (requirements 3-6). Since the initialized mesh M al-
ready has a well-defined topology, the mesh optimization
process will only modify its geometry but not topology.

Mesh clustering-and-optimization. Modeling a mesh with
discrete equivalence classes is generally done via clustering
and optimizing vertices and/or edges in the mesh. A typical
computational framework is to cluster the vertices using K-
means and then to minimize variance in each cluster via
local [2] or global [3] mesh optimization. Since the optimiza-
tion does not guarantee that the variance in each cluster is
smaller than the allowed tolerance, users need to gradually
increase the number of clusters, K, and repeat the clustering-
and-optimization, until the tolerance requirement is satisfied.
Although this framework is effective, one limitation is the
difficulty to specify K. This limitation is severe in our problem
since we have to specify two K’s, i.e., Kv for clustering
vertices and Ke for clustering edges.

To address the above limitation, we propose a new com-
putational framework that enables automatic determination of
Kv and Ke. Our framework has two unique features:
• Hierarchical clustering. Our framework uses hierarchical

clustering instead of K-means to cluster vertices and
edges in a mesh, respectively. This is because hierarchical
clustering is able to automatically determine K for a
prescribed tolerance; see Section V.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 5

Fig. 5. A diagram of our computational framework to model wireframe
meshes with discrete equivalence classes.

• Local-global optimization. Our framework combines the
strength of local and global optimization to reduce the
number of distinct vertices and edges. The strength of
local mesh optimization is to reduce the number of
clusters by eliminating clusters with few elements via
cluster merging; see Section VI. The strength of global
mesh optimization is to satisfy a set of requirements that
may conflict with one another; see Section VII.

Figure 5 shows the diagram of our computational frame-
work for iterative mesh clustering-and-optimization. At the
beginning, we use a large vertex tolerance ω0

vεv and a large
edge tolerance ω0

eεe for the clustering, where ω0
v and ω0

e are
coefficients that are set to 3.0 by default. These large tolerances
lead to a small number of vertex clusters and edge clusters,
respectively. The intra-cluster variances for vertex clusters and
edge clusters are then reduced by the (global) mesh optimiza-
tion. At each iteration, we decrease the vertex tolerance and
edge tolerance by ∆ωvεv and ∆ωeεe, respectively, and re-
cluster the mesh vertices and edges using hierarchical cluster-
ing to discover new clusters of vertices and edges subject to
the decreased tolerances. We perform this iterative clustering-
and-optimization process until vertex tolerance is reduced to
ωN
v εv and the edge tolerance is reduced to ωN

e εe, where ωN
v

and ωN
e are typically set to 1.0 and N is set to 20 by default.

At the end, we perform hierarchical clustering on the vertices
and edges in the optimized mesh using tolerance εv and εe
to determine Kv and Ke, respectively. Note that hierarchical
clustering using tolerance εv (εe) does not guarantee that the

radius of each vertex (edge) cluster is always less than εv
(εe); see Equations 3 and 4. Hence, we perform a final check
on the radius of each vertex/edge cluster and split the cluster
if it does not satisfy Equation 3 and/or 4. Thanks to our
global optimization that minimizes the intra-cluster variance
of vertex/edge clusters, the cluster splitting is rarely needed in
our experiments.

Besides the ability to automatically determine Kv and Ke,
our framework also allows users to specify their preference
in reducing the number of distinct vertices or edges. For
example, users may have a preference to reduce the number
of distinct vertices to decrease the total fabrication cost in
case that nodes are made with expensive molds while rods
are fabricated with cheap wood cutting. The preference is
specified via adjusting the values of ωN

v and ωN
e ; see Figure 15

for an example. A large value of ωN
v > 1.0 (ωN

e > 1.0)
means a preference on reducing the number of distinct vertices
(edges). A small value of ωN

v < 1.0 (ωN
e < 1.0) means less

interest in reducing the number of distinct vertices (edges). In
particular, our framework allows to model wireframe meshes
with discrete equivalence classes of vertices (or edges) by
setting ω0

e = ωN
e = 0 (ω0

v = ωN
v = 0).

V. CLUSTERING

In this section, our goal is to partition all the edges and
vertices in the mesh M into:

• clusters of edges Ce = {Cl
e}, where the radius of

each edge cluster Cl
e = {el,j} is less than a prescribed

tolerance ωn
e εe; and

• clusters of vertices Cv = {Ck
v }, where the radius of

each vertex cluster Ck
v = {vk,i} is less than a prescribed

tolerance ωn
v εv .

We solve the problem via hierarchical clustering as mentioned
in Section IV.

Clustering mesh edges. To cluster mesh edges, each edge is
represented by a single number, which is the edge length. We
cluster edges using hierarchical agglomerative clustering [31],
which starts with each data point (e.g., an edge length number)
in its own cluster and progressively join the closest clusters
to reduce the number of clusters by one until there is a single
cluster comprising all the data points. We measure the distance

Fig. 6. Hierarchical clustering of (left) 10 edges and (right) the resulting
dendrogram. The horizontal dashed line shows the prescribed tolerance ωn

e εe,
resulting in three clusters of edges.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 6

Fig. 7. We measure the shape dissimilarity of two vertices (a) vi and (b) vj
with valence 3 by (c) finding the best alignment transformation that minimizes
the sum of squared distances (i.e., d1, d2 and d3 in this example) between
corresponding neighboring vertices projected onto a unit sphere.

between two edges based on the absolute difference of the two
edge lengths:

De(ei, ej) = |len(ei)− len(ej)| (5)

We measure the distance between two edge clusters using:

De(C
i
e, C

j
e) = De(ēi, ēj) (6)

where ēi and ēj are the centroid of the edge clusters Ci
e and

Cj
e , respectively. The centroid of each cluster is calculated as

the mean of the edge lengths.
Figure 6 shows the dendrogram that visualizes the result

of hierarchical clustering of 10 edges. The number of edge
clusters can be easily determined based on the dendrogram
and the prescribed tolerance ωn

e εe, since the height in the
dendrogram represents the distance between clusters. In detail,
we first draw a horizontal line at height ωn

e εe; see the dashed
line in Figure 6. Then, we count the number of vertical lines in
the dendrogram that intersect with the horizontal line, which
is the number of clusters. Mesh edges that are joined together
below each vertical line form a cluster.

Clustering mesh vertices. A mesh vertex’s shape is defined
by its incident edges; see Figure 7(a&b). The normalized
direction of each incident edge is represented by 2 variables
in a spherical coordinate system. Hence, the shape of a mesh
vertex with valence m is represented by 2m independent
variables. In this paper, only vertices with the same valence
can fall into the same cluster. We cluster mesh vertices with
the same valence using hierarchical agglomerative clustering.
The only difference from clustering mesh edges is the distance
metric for the clustering, which we introduce below.

We compute the distance metric between a pair of vertices vi
and vj with valence m by measuring their shape dissimilarity.
This problem has been addressed by different approaches [12],
[2], [3]. In this paper, we choose the approach in [3] due to its
efficiency and give a brief introduction of it for completeness.
To measure shape dissimilarity between a pair of vertices vi
and vj with valence m, we first move both vertices to the
origin with their neighboring vertices projected onto a unit
sphere. By this, each vertex is represented as an ordered set
of its neighboring vertices. Then, we compute their best align-
ment by fixing one vertex vi and rotating vj to minimize the
sum of squared distances between corresponding neighboring
vertex pairs; see Figure 7(c). Due to the choice of starting
vertex and the order of neighboring vertices, there are 2m

Algorithm 1 Algorithm to decrease the number of vertex
clusters via local mesh optimization.

1: function LOCALMESHOPTIMIZATION(M)
2: list L← ∅
3: for each cluster Ck

v in Cv do
4: if number of vertices in Ck

v is ≤ hthres then
5: list L.push(Ck

v)
6: end if
7: end for
8: sort list L in ascending order in terms of cluster size

9: for each cluster Ci
v in list L do

10: eliminate success ← True
11: for each vertex v in cluster Ci

v do
12: select a cluster Ct

v from Cv − L
13: if ReassignVertexToCluster(v, Ct

v) == True
then

14: update centroids of clusters Ci
v and Ct

v

15: else
16: eliminate success ← False
17: break
18: end if
19: end for
20: if eliminate success == True then
21: Cv .pop(Ci

v)
22: else
23: reset vertices and centroid of cluster Ci

v

24: reset vertices and centroid of clusters {Ct
v}

25: end if
26: end for
27: end function

possible permutations for vj . Thus, the shape dissimilarity is
measured using:

Dv(vi, vj) =
2m

min
k=1

min

√∑m
l=1(dl)2

m
(7)

where dl is the distance between lth pair of corresponding
neighboring vertices and k is the permutation index. We solve
the minimization problem using singular value decomposition
to find the optimal rotation matrix Tj of vertex vj [3]. In
particular, Dv(vi, vj) = 0 indicates that the two vertices have
exactly the same shape.

We measure the distance between two vertex clusters using:

Dv(Ci
v, C

j
v) = Dv(v̄i, v̄j) (8)

where v̄i and v̄j are the centroid of the vertex clusters Ci
v and

Cj
v , respectively. To compute the cluster centroid, we align all

the vertices in a cluster using Equation 7 and then compute
the shape of the centroid by averaging the corresponding
neighboring vertices projected onto the unit sphere.

VI. LOCAL MESH OPTIMIZATION

The goal of local mesh optimization is to reduce the number
of distinct vertices and/or edges by perturbing the mesh M.
Denote the number of distinct vertices and the number of
distinct edges at nth iteration in our framework as Kn

v and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 7

Fig. 8. Vertex perturbation to reassign (b) a vertex (in green) to a cluster
whose (a) centroid (in blue) has (c) a similar shape. (d&e) Vertex perturbation
makes the vertex’s shape closer to that of the centroid, yet it may also modify
the shapes of neighboring vertices (in black) and the lengths of incident edges
(in green).

Kn
e , respectively. According to the user’s preference, the goal

can be classified into three cases:
1) decrease Kn

v only;
2) decrease Kn

e only;
3) decrease Kn

v and Kn
e .

We introduce the formulation and approach of our local
mesh optimization to achieve the goal of the first case (Sec-
tion VI-A). After that, we explain how to make slight changes
to the formulation and approach to achieve the goal of the
other two cases (Sections VI-B and VI-C).

A. Decrease Kn
v

After the clustering in Section V, there may exist some
clusters with few vertices. Our idea is that we are possible to
eliminate a cluster with few vertices by modifying the shape
of each vertex and reassigning the modified vertex to another
cluster without violating the requirement of tolerance ωn

v εv .
Algorithm 1 shows the process of eliminating clusters with
h ≤ hthres vertices, where hthres is set to 2 in our experiments.
For each cluster with h vertices, the algorithm tries to reassign
each of the h vertices to another cluster by slightly modifying
the shape of the vertex via vertex perturbation. The cluster to
reassign the vertex is chosen as the one whose centroid has
the same valence as the vertex and has the closest shape to
the vertex.

The key operation in our local mesh optimization
is to reassign a vertex v to a selected cluster Ct

v

via perturbing the vertex to modify its shape; see
ReassignVertexToCluster(v, Ct

v) in Algorithm 1
and Figure 8. The vertex reassignment via perturbation has to
satisfy several requirements, which we will introduce below.
If a vertex reassignment is not successful, it means that the
cluster where the vertex falls in cannot be eliminated. In this
case, we undo all the changes on the mesh M as well as the
vertex clusters Cv .

Reassign a vertex via perturbation. Since our goal is to
decrease the number (Kn

v) of distinct vertices, modifying the
shape of a vertex v should reassign the vertex v to a selected
cluster Ct

v:
Dv(v, v̄t) < ωn

v εv, (9)

Fig. 9. Clustering of vertices (left) before and (right) after running our local
mesh optimization to eliminate clusters with few vertices. Three clusters, each
of which has a single vertex, eliminated by our vertex perturbation are shown
on the top left corner, and also highlighted with black arrows in the mesh on
the left. The centroids of three clusters to assign the three vertices, respectively,
are shown at the bottom.

where v̄t is the centroid of the selected cluster Ct
v .

To satisfy the shape closeness requirement in Section III,
the perturbed vertex v should not be too far away from the
input surface P. This requirement is formulated as minimizing
the following distance:

Dist(v, P) = ‖v − c(v)‖, (10)

where v denotes the 3D position of vertex v and c(v) is the
closest point on the input mesh P to the vertex v.

Perturbing a vertex v will likely change its own shape as
well as the shape of each of the vertex’s neighboring vertices
N(v) due to the edge shared between the vertex v and its
neighbor; see Figure 8(d). Hence, the fabrication constraint
on the vertex angle (Equation 1) has to be satisfied for the
vertex v and each of its neighbors. Moreover, we require each
neighboring vertex vk ∈ N(v) with modified shape to stay in
its own cluster as a hard constraint:

Dv(vk, v̄k) < ωn
v εv, ∀vk ∈ N(v) (11)

where v̄k is the centroid of the vertex cluster that the neigh-
boring vertex vk falls in. The purpose of this hard constraint is
to avoid any chance of increasing the number (Kn

v) of vertex
clusters since large modification on the neighboring vertices’
shapes may introduce new clusters of vertices.

Perturbing a vertex v will likely change the length of
each of the vertex’s incident edges I(v) since the other end
(i.e., the neighboring vertex) of the edge is fixed; see again
Figure 8(d). Hence, the fabrication constraint on the edge
length (Equation 2) has to be satisfied for each incident edge
el ∈ I(v). Moreover, we require each incident edge el ∈ I(v)
with modified length to stay in its own cluster as a soft
constraint:

De(el, ēl) < ωn
e εe, ∀ej ∈ I(v) (12)

where ēl is the centroid of the edge cluster that the incident
edge el falls in. The purpose of this soft constraint is to avoid
increasing the number (Kn

e) of edge clusters.
Vertex perturbation solver. In the above vertex perturbation

problem, the search space is rather small, which is the 3D
position v of the vertex v. One straightforward approach is to
randomly sample many 3D points around the initial position of
the vertex v, and then check if a sampled position satisfies the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 8

Fig. 10. Vertex perturbation to reassign (b) an edge (in green) to a cluster
whose (a) centroid (in blue) has a similar length to the edge. (c) Perturbing
one end (i.e., the left end) of the edge makes the edge’s length closer to that
of the centroid.

above constraints. However, one limitation of this sampling-
based solver is its efficiency. To this end, we formulate an
optimization problem to search for a feasible 3D position of
the vertex v:

Elocal = ω1(Dv(v, v̄t))
2 + ω2(Dist(v, P))2 +

ω3

∑
k

(Dv(vk, v̄k))2 + ω4

∑
l

(De(el, ēl))
2 (13)

s.t. θi > 2 arctan
w

r
, ∀ mesh vertex ∈ {v,N(v)}

lj > 2R, ∀ mesh edge ∈ I(v)

where ω1, ω2, ω3, and ω4 are weights and we set their
default values as 5, 1, 5, and 1, respectively. This optimization
problem is a small-scale version (i.e., one-ring neighborhood
around vertex v) of the global mesh optimization to be
presented in Section VII. Although large weights (i.e., ω1

and ω3) have been assigned for the first and third terms in
Equation 13, they cannot guarantee the hard constraints in
Equations 9 and 11 are always satisfied. To resolve this issue,
we perturb the optimization solution using the sampling-based
approach if the solution does not satisfy Equations 9 and/or 11.
The vertex reassignment via perturbation fails if the solver
cannot find a feasible solution. Please refer to Section VII
and the supplementary material for the optimization solver.
Figure 9 shows a result before and after performing the local
mesh optimization. In this example, 3 clusters of vertices, each
of which has a single vertex, are eliminated by performing
vertex perturbation.

B. Decrease Kn
e

Since our goal is to decrease the number (Kn
e) of distinct

edges, we perturb either end of an edge e to change its length
such that the modified edge can be reassigned to a selected
cluster Ct

e; see Figure 10. The key operation is still vertex
perturbation. Yet, the difference is that we have two vertices
(i.e., two endpoints of the edge e) that can be perturbed. We
perturb one endpoint vertex at a time using an approach similar
to Section VI-A. Other than that, the process to perturb vertices
for eliminating clusters with few edges follows Algorithm 1.

To eliminate clusters with few edges, there are two differ-
ences in the constraints of vertex perturbation. First, perturbing
a vertex should reassign an edge e to a selected cluster Ct

e:

De(e, ēt) < ωn
e εe, (14)

Fig. 11. (Top) 9 vertex clusters and (bottom) 10 edge clusters in a DUCK
model (left) before and (right) after our global mesh optimization to reduce
intra-cluster variance. The intra-cluster variance of each vertex/edge cluster
is shown as a histogram beside the corresponding model. Note that vertex
clusters and edge clusters are sorted according to the cluster size in descending
order, respectively. The 7th, 8th, and 9th vertex clusters only have a single
vertex and thus they do not have intra-cluster variance (i.e., no bar in the top
histograms). The same applies to the 9th and 10th edge clusters.

where ēt is the centroid of the selected cluster Ct
e. Second,

perturbing a vertex may change the shapes of its neighboring
vertices and the lengths of its incident edges. Different from
Section VI-A, we require each incident edge to stay in its
own cluster as a hard constraint and require each neighboring
vertex to stay in its own cluster as a soft constraint. To
solve the vertex perturbation problem, the first energy term
in Equation 13 is replaced with (De(e, ēt))

2.

C. Decrease Kn
v and Kn

e

Since our goal is to decrease the number (Kn
v) of distinct

vertices and the number (Kn
e) of distinct edges, we need to

first run Algorithm 1 to eliminate clusters with few vertices
without increasing Kn

e . Hence, when perturbing a vertex v, we
require each neighboring vertex to stay in its own cluster as a
hard constraint (Equation 11), and require each incident edge
to stay in its own cluster as a hard constraint (Equation 12).
After that, we run a similar version of Algorithm 1 to elim-
inate clusters with few edges without increasing Kn

v , where
Equations 11 and 12 are also formulated as hard constraints.

VII. GLOBAL MESH OPTIMIZATION

The goal of our global optimization on the mesh M is to
minimize intra-cluster variance for Kn

v clusters of vertices and
Kn

e clusters of edges. Since vertex shapes and edge lengths
are highly coupled with each other, they have to be optimized
at the same time. Moreover, the optimization has to satisfy
the fabrication constraints described by Equations 1 and 2,
and does not cause the mesh M to deviate too much from the
input surface P, especially for shape features (if any).

Vertex clusters. We minimize the intra-cluster variance of
vertex clusters using the term:

Evertex =

Kv∑
k=1

∑
i

(Dv(vk,i, v̄k))2 (15)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 9

Fig. 12. Our approach allows modeling wireframe meshes with discrete equivalence classes for surfaces with various shapes and topologies. From left to
right and then top to bottom: FLOWER, MONKEY SADDLE, FREE HOLES, VASE, KNOT, CAD PART, TEDDY, KITTEN, and FERTILITY. The input surface
P is also shown beside each result.

where vk,i is the ith vertex in the kth vertex cluster, and v̄k
is the centroid of the kth vertex cluster.

Edge clusters. We minimize the intra-cluster variance of
edge clusters using the term:

Eedge =

Ke∑
l=1

∑
j

(De(el,j , ēl))
2 (16)

where el,j is the jth edge in the lth edge cluster, and ēl is the
centroid of the lth edge cluster.

Shape closeness. We maintain shape closeness of the
optimized mesh using the term:

Eshape =

Nv∑
i

‖vi − c(vi)‖2, (17)

where {vi} denotes the 3D positions of all the Nv vertices of
the mesh M, and c(vi) is the closest point on the input mesh
P to the vertex vi.

Shape features. We preserve shape features using the term:

Efeature =

Nf∑
j

‖vj − v′j‖2, (18)

where {vj} denotes the 3D positions of all the Nf feature
vertices of the mesh M, and v′j is the position of a feature
vertex in the input mesh P.

Global optimization. The objective function of our global
optimization is a weighted sum of the above energy terms:

Eglobal = λ1Evertex + λ2Eedge + λ3Eshape + λ4Efeature (19)

s.t. θi > 2 arctan w
r , ∀ vertex angle

lj > 2R, ∀ mesh edge

where θi is the angle between any two edges joined at the same
vertex (see Equation 1), and lj is the length of a mesh edge
(see Equation 2). We empirically set the weights as λ1 = 3,
λ2 = 6, λ3 = 4, and λ4 = 20 in our experiments.

Solver. The search space of our optimization problem is the
positions {vi} of all the vertices in the mesh M. We represent
each of the above energy terms and constraints using {vi},
reformulate our global optimization as a least squares problem,
and solve it using the successive over-relaxation (SOR) in
Eigen library [32]. Please refer to the supplementary material
for implementation details of our solver. Figure 11 shows a
mesh model before and after the global optimization for a
single iteration in our computational framework, from which
we can see that our global optimization reduces the intra-
cluster variance of vertex clusters and edge clusters while
preserving the input shape as well as its features (e.g., duckbill
and tail).

VIII. RESULTS

We implemented our approach in C++ and libigl [33] on
a desktop computer with a 3.7GHz CPU and 16GB memory.
In our experiments, we set the tolerance εv in Equation 3 to
0.0872, which is equivalent to limiting the average deviation
angle (between corresponding incident edges) smaller than 5◦

when aligning each vertex to the cluster centroid; see again
Figure 7. We set the tolerance εe in Equation 4 to 1% of the
average edge length in the mesh M.

We present our virtual results using a consistent scheme.
First, we show each modeled wireframe mesh with thickened
vertices and edges (i.e., wireframe structure) to better visualize
the result. Second, for each result, both vertex clusters and
edge clusters are sorted according to the cluster size in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 10

Fig. 13. Our approach allows modeling wireframe polygonal meshes with dif-
ferent patterns, including quad, hexagon, triangle-quad, and triangle-hexagon
patterns.

descending order, respectively. Third, both vertex clusters and
edge clusters are rendered using a consistent color scheme. For
example, the first vertex cluster is rendered in orange and the
second vertex cluster is rendered in blue; the first edge cluster
is rendered in blue and the second edge cluster is rendered in
green. Please refer to the histogram bar colors in Figure 11
for the color scheme.

Results. We show that our approach allows modeling wire-
frame meshes with discrete equivalence classes for surfaces
with various shapes and topologies in Figure 12, including
freeform architectural surfaces (top), man-made objects with
sharp features (middle), and organic shapes with branches
and/or holes (bottom). Shape features in all these surfaces
are well preserved by our approach such as boundary curve
of FLOWER, sharp edges in KNOT and CAD PART, ears of
KITTEN, and holes in FERTILITY. All the results shown in
Figure 12 are wireframe triangle meshes with a large variety
in the number of vertices, e.g., MONKEY SADDLE with 121
vertices, and FERTILITY with 1857 vertices. Our approach
is able to model wireframe polygonal meshes with discrete
equivalence classes. Figure 13 shows four polygonal mesh
results with different patterns, where the mesh M is initialized
via mapping a 2D tessellation onto the input surface P. Please
refer to the accompanying video for visualization of these
virtual results from different views.

Evaluating our computational framework. Figure 14 shows
a running example of our computational framework. At the
beginning, the wireframe mesh has a small cluster (Kn

v) of
vertices and a small cluster (Kn

e) of edges due to the large
prescribed tolerances (ωn

v and ωn
e). At each iteration, our

framework gradually decreases the prescribed tolerances and
performs clustering-and-optimization on the mesh vertices and
edges to discover new clusters; see plots of Kn

v and Kn
e in

Figure 14. Figure 15 shows that our approach allows users
to specify their preference on reducing the number of distinct
vertices or edges. This is achieved by setting values of ωN

v

and ωN
e , where a large value of ωN

v (ωN
e) means a preference

on reducing the number of distinct vertices (edges). When

TABLE I
STATISTICS AND TIMINGS. WE REPORT THE INPUT SURFACE, NUMBER OF
VERTICES (Nv), NUMBER OF EDGES (Ne), NUMBER OF VERTEX CLASSES

(Kv) AND EDGE CLASSES (Ke), AVERAGE SIZE OF VERTEX CLASSES
(Nv/Kv), AVERAGE SIZE OF EDGE CLASSES (Ne/Ke), MAXIMUM AND

MINIMUM OF THE SIZES ({siv}) OF VERTEX CLASSES AND THE SIZES

({sje}) OF EDGE CLASSES, RESPECTIVELY, NORMALIZED HAUSDORFF
DISTANCE BETWEEN THE WIREFRAME MESH AND THE INPUT SURFACE,

AND TIME TO GENERATE EACH WIREFRAME MESH RESULT.

TABLE II
STATISTICS OF THE RESULTS IN THE ABLATION STUDY ON THE LOCAL

OPTIMIZATION.

ωN
e = 0, it means our approach only reduce the number of

distinct vertices but not edges. Despite this, the number of edge
clusters is still smaller than the number of mesh edges, due to
the tolerance εe; see the leftmost mesh in Figure 15. The same
applies to the other extreme case of ωN

v = 0; see the rightmost
mesh in Figure 15. In this experiment, we find that a smaller
number (Kn

v) of vertex clusters make local shape features
of the BUNNY more rounded, resulting a larger Hausdorff
distance from the input surface; see Table I. In addition,
we evaluate the effectiveness of the local optimization in
our computational framework through an ablation study. In
this study, we ran our approach with and without the local
optimization, respectively, on three input surfaces. The results
show that the local optimization can effectively reduce Kv and
Ke without significantly increasing the computation time; see
Table II for the statistics.

Statistics. Table I summarizes statistics of the results

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 11

Fig. 14. Our computational framework iteratively clusters and optimizes the mesh to discover new clusters of vertices and edges (Kn
v , Kn

e) guided by the
two prescribed tolerances (ωn

v , ωn
e) that are gradually decreased in each iteration.

Fig. 15. Our approach allows users to specify their preference on reducing the number of distinct vertices or edges, by setting the values of ωN
v and ωN

e .
We show the number (Kv) of vertex classes and the number (Ke) of edge classes beside each resulting mesh.

Fig. 16. Comparing [3] with our approach (Ours) as well as a variation of our approach (Ours vertex) to model a quad mesh with discrete equivalence classes
of vertices. The input surface is shown on the left and statistics of the three results are provided in Table III.

presented in the paper. For each result, both the sizes {siv}
of vertex classes and the sizes {sje} of edge classes have a
large variation. Large classes can have more than 100 elements
while most smallest classes have a single element. Moreover,
we find that a surface with more complex shape require
a larger number of vertex/edge classes to approximate. For
example, FLOWER in Figure 12 and DUCK in Figure 19 are
both represented as triangles meshes with similar numbers of
vertices and edges. Since DUCK has more complex shape than
FLOWER, the average size of vertex classes are 4.5 vs 33.8
and the average size of edge classes are 11.5 vs 24.3. Our
computational approach is efficient. Modeling a wireframe
mesh with around 200 vertices takes less than 1 minute. For
each result shown in the paper, we provide the Hausdorff
distance between the modeled wireframe mesh M and the

input surface P, which is normalized by the diagonal length
of the input surface P’s bounding box. Please refer to the
supplementary data for the 3D models of these meshes.

Comparison with [3]. Liu et al. [3] proposed an approach
to model wireframe meshes with discrete equivalence classes
of vertices, which is based on iteratively performing K-means
clustering of vertices and global mesh optimization to reduce
intra-cluster variance. Our approach is different from [3] in two
aspects. First, we use a new computational framework with
hierarchical clustering and local-global optimization. Second,
we perform clustering-and-optimization on both mesh vertices
and edges. For an ablation study, we prepare a variation
of our approach that performs clustering-and-optimization on
the mesh vertices only. For a fair comparison, we cluster
the final results generated by the three approaches using our

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 12

TABLE III
STATISTICS OF THE THREE COMPARISON EXPERIMENTS.

hierarchical clustering with the same tolerance εv = 0.0872.
We set ωN

v = 1.0 and ωN
e = 1.0 in our approach and

the variation. Figure 16 shows the results of running the
three approaches on an architectural surface represented as
a quad mesh. To approximate the input surface with the same
Hausdorff distance, the variation of our approach requires 7
classes of vertices while the approach in [3] requires 12 classes
of vertices, showing the effectiveness of our computational
framework to reduce the number of distinct vertices; see
Table III. In addition, our approach requires only 5 classes
of vertices to approximate the input surface, demonstrating
that clustering-and-optimizing mesh vertices and edges simul-
taneously can help to reduce the number of distinct vertices,
for an input surface with a semi-regular pattern.

Comparison with [2]. Xiong et al. [2] proposed another ap-
proach to model wireframe meshes with discrete equivalence
classes of vertices, which is based on iteratively performing
K-medoids clustering of vertices and local mesh perturbation
to reduce the number of clusters. Xiong et al. did not con-
sider fabrication constraints (i.e., Equations 1 and 2) in their
modeling approach. For a fair comparison, we also ignore
the fabrication constraints in our approach. Moreover, we
cluster the final results generated by both approaches using our
hierarchical clustering with the same tolerance εv = 0.0872.
Figure 17 shows the results of running both approaches on
three architectural surfaces, each of which is represented as
a triangle mesh. To approximate each surface with the same
Hausdorff distance, our approach requires fewer vertex classes
Kv than [2]; see Table III. This comparison result shows
the effectiveness of our local-global optimization scheme to
reduce the number of distinct vertices.

Comparison with Zometool [4]. Zimmer et al. [4] pro-
posed an approach to approximate an input surface using the
Zometool construction set, which consists of nine struts of
different lengths and a universal node with 62 slots. Figure 18
shows the results of running both approaches on the BUNNY
model. The result generated by [4] is a polygonal mesh with
both triangles and quads, which consists of 392 vertices and
968 edges. If we consider nodes with exactly the same slot
insertion configuration as one node class, the result generated
by [4] has 374 node (i.e., vertex) classes. In contrast, the result
generated by our approach is a triangle mesh with 392 vertices

Fig. 17. Comparing [2] with our approach to model three architectural
surfaces with discrete equivalence classes of vertices, where our approach
generates a smaller number (Kv) of vertex classes for each surface. Statistics
of the results are provided in Table III.

Fig. 18. Comparing (left) Zometool shape approximation [4] with (right) our
approach. Our approach is able to better approximate the BUNNY model using
a smaller number of vertex classes and a smaller number of edge classes; see
Table III for the statistics.

and 1170 edges, where the vertices fall into 278 classes and
the edges fall into 6 classes. This comparison experiment
shows that our approach is able to approximate a 3D surface
using a smaller number of vertex classes (278 vs 374) and
a smaller number of edge classes (6 vs 9). Despite using a
smaller number of templates, our modeled wireframe mesh
approximates the input surface better. Table III shows that our
modeled wireframe mesh has a smaller Hausdorff distance to
the input surface. Figure 18 shows that our modeled wireframe
mesh better preserves shape features such as the head and
tail of BUNNY. One reason of our better performance is that
our templates are computed for approximating a specific input
shape while the templates in the Zometool construction set are
designed to approximate a variety of shapes.

Fabricated prototypes. Our modeled wireframe meshes are
ready for fabrication. We validate this by making three wire-
frame meshes modeled by our approach, i.e., HYPERBOLIC,
IGLOO, and DUCK; see Figure 19. All the three physical wire-
frame structures share the same fabrication-related parameters
described in Section III; i.e., the radius w of each rod is

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 13

Fig. 19. We fabricate three of our modeled wireframe meshes with 3D printed
nodes and precision-cut rods, from top to bottom, HYPERBOLIC, IGLOO, and
DUCK. Fabricated nodes and rods of the same class are clustered together on
the left. A mug is put beside each structure to show its real scale.

0.16cm, the radius R of each node is 0.9cm, and the depth
R−r of each cylindrical hole is 0.36cm. Based on this setting,
each vertex angle θ should be greater than 33◦ according to
Equation 1 and each edge length l should be larger than 1.8
cm according to Equation 2. We fabricate instances of template
nodes by 3D printing them using Ultimaker S5 printer with
tough PLA material. After 3D printing, we paint nodes in
the same class using the same color. We fabricate instances
of template rods by manually cutting wooden sticks with the
computed lengths. Thanks to the discrete equivalence classes
of edges, we are able to cut a bunch of wooden sticks of
the same length together rather than cutting them one by
one. We assemble nodes and rods by simply inserting each
rod into the corresponding cylindrical hole in the node. The
assembly order of nodes and rods are quite flexible since
many of them have exactly the same shape (i.e., fall in
discrete equivalence classes). Once assembled, each wireframe
structure is stable purely based on node-rod joinery without
using any glue [34], [35], and the shape of the structure
is identical to that of its virtual counterpart. Please watch
the accompanying video for the demo of assembling each
structure. We provide the 3D models of the three wireframe
structures as well as corresponding template nodes and rods
in the supplementary data.

IX. CONCLUSION AND FUTURE WORK

This paper studies a new problem of modeling wireframe
meshes with discrete equivalence classes of vertices and edges.
We propose a computational approach to solve the problem
via iteratively clustering and optimizing a wireframe mesh.
The key algorithmic components in our approach include
hierarchical clustering of mesh vertices and edges according
to prescribed tolerances, local mesh optimization to reduce the
number of clusters of vertices and/or edges, and global mesh
optimization to reduce intra-cluster variance while satisfy-
ing the fabrication constraints. Quantitative comparisons with
three state-of-the-art approaches show that our approach has
strengths in several aspects, including reducing the number of
distinct vertices and edges, preserving the shape and features
of an input surface, and determining the number of vertex
classes and edge classes automatically.

Limitations and future work. Our work has several limita-
tions that open up interesting directions for future research.
First, our approach may have difficulty in modeling and
fabricating wireframe meshes with too many vertices, although
this may not be common in practice. This is because the time
and storage complexity of hierarchical clustering is high. One
possible way to address this limitation is to model a wireframe
mesh part by part using a divide-and-conquer strategy. Second,
the searching space of our local-global optimization is the
geometry of the wireframe mesh only. Extending the approach
to optimize both the mesh geometry and topology is an
interesting research challenge. Lastly, our approach models
wireframe meshes to fabricate them as a single layer space
frame structure. Generalizing our approach to model and
fabricate non-manifold space structures like general space truss
structures [36] and reciprocal frame structures [37], [38] would
be an interesting future work.

ACKNOWLEDGMENTS

The authors would like to thank Yi Min Xie for sharing the
quad mesh in Figure 16, Weidan Xiong for sharing the three
triangle meshes in Figure 17, and Leif Kobbelt for providing
information about the Zometool model in Figure 18.

REFERENCES

[1] T. T. Lan, “Space frame structures,” in Structural Engineering Hand-
book, pp. 1–59, CRC Press LLC, 1999.

[2] W. Xiong, C. M. Cheung, P. V. Sander, and A. Joneja, “Rationalizing
architectural surfaces based on clustering of joints,” IEEE Trans. Vis. &
Comp. Graphics, vol. 28, no. 12, pp. 4274–4288, 2022.

[3] Y. Liu, T.-U. Lee, A. Koronaki, N. Pietroni, and Y. M. Xie, “Reducing
the number of different nodes in space frame structures through cluster-
ing and optimization,” Engineering Structures, vol. 284, pp. 116016:1–
116016:10, 2023.

[4] H. Zimmer, F. Lafarge, P. Alliez, and L. Kobbelt, “Zometool shape
approximation,” Graphical Models, vol. 76, no. 5, pp. 390–401, 2014.

[5] S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretière,
and P. Baudisch, “WirePrint: 3D printed previews for fast prototyping,”
in Proc. ACM UIST, pp. 273–280, 2014.

[6] R. Wu, H. Peng, F. Guimbretière, and S. Marschner, “Printing arbitrary
meshes with a 5DOF wireframe printer,” ACM Trans. on Graph.
(SIGGRAPH), vol. 35, no. 4, pp. 101:1–101:9, 2016.

[7] Y. Huang, J. Zhang, X. Hu, G. Song, Z. Liu, L. Yu, and L. Liu,
“FrameFab: Robotic fabrication of frame shapes,” ACM Trans. on
Graph. (SIGGRAPH Asia), vol. 35, no. 6, pp. 224:1–224:11, 2016.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2025 14

[8] R. Richter and M. Alexa, “Beam meshes,” Comp. & Graph., vol. 53,
pp. 28–36, 2015.

[9] A. Jacobson, “RodSteward: A design-to-assembly system for fabrication
using 3d-printed joints and precision-cut rods,” Comp. Graph. Forum
(Pacific Graphics), vol. 38, no. 7, pp. 765–774, 2019.

[10] S. Chidambaram, Y. Zhang, V. Sundararajan, N. Elmqvist, and K. Ra-
mani, “Shape structuralizer: Design, fabrication, and user-driven iterative
refinement of 3D mesh models,” in Proc. ACM CHI, pp. 663:1–663:12,
2019.

[11] Z. Wang, F. Kennel-Maushart, Y. Huang, B. Thomaszewski, and
S. Coros, “A temporal coherent topology optimization approach for
assembly planning of bespoke frame structures,” ACM Trans. on Graph.
(SIGGRAPH), vol. 42, no. 4, pp. 144:1–144:13, 2023.

[12] A. Koronaki, P. Shepherd, and M. Evernden, “Rationalization of
freeform space-frame structures: Reducing variability in the joints,”
International Journal of Architectural Computing, vol. 18, no. 1, pp. 84–
99, 2020.

[13] S. Dritsas, L. Chen, and L. Sass, “Small 3D printers / large scale artifacts
- computation for automated spatial lattice design-to-fabrication with low
cost linear elements and 3d printed nodes,” in Proc. of International
Conference of the Association for Computer-Aided Architectural Design
Research in Asia (CAADRIA), pp. 821–831, 2017.

[14] J. Brütting, G. Senatore, and C. Fivet, “Design and fabrication of a
reusable kit of parts for diverse structures,” Automation in Construction,
vol. 125, pp. 103614:1–103614:15, 2021.

[15] H. Zimmer and L. Kobbelt, “Zometool rationalization of freeform
surfaces,” IEEE Trans. Vis. & Comp. Graphics, vol. 20, no. 10, pp. 1461–
1473, 2014.

[16] M. Singh and S. Schaefer, “Triangle surfaces with discrete equivalence
classes,” ACM Trans. on Graph. (SIGGRAPH), vol. 29, no. 4, pp. 46:1–
46:7, 2010.

[17] M. Huard, M. Eigensatz, and P. Bompas, “Planar panelization with
extreme repetition,” in Proc. Advances in Architectural Geometry 2014,
pp. 259–279, 2015.

[18] M. Bi, Y. Liu, T. Xu, Y. He, J. Ma, Z. Zhuang, and Y. M. Xie,
“Clustering and optimization of nodes, beams and panels for cost-
effective fabrication of free-form surfaces,” Engineering Structures,
vol. 307, pp. 117912:1–117912:12, 2024.

[19] C.-W. Fu, C.-F. Lai, Y. He, and D. Cohen-Or, “K-set tilable surfaces,”
ACM Trans. on Graph. (SIGGRAPH), vol. 29, no. 4, pp. 44:1–44:6,
2010.

[20] Y. Liu, T.-U. Lee, A. R. Javan, N. Pietroni, and Y. M. Xie, “Reducing
the number of different faces in free-form surface approximations
through clustering and optimization,” Computer-Aided Design, vol. 166,
pp. 103633:1–103633:12, 2023.

[21] Z.-Y. Liu, Z. Zhang, D. Zhang, C. Ye, L. Liu, and X.-M. Fu, “Modeling
and fabrication with specified discrete equivalence classes,” ACM Trans.
on Graph. (SIGGRAPH), vol. 40, no. 4, pp. 41:1–41:12, 2021.

[22] T. Zhu, Z.-H. Xu, L. Liu, and X.-M. Fu, “Modeling with discrete
equivalence classes of planar quads,” Comp. & Graph. (CAD/Graphics),
vol. 115, pp. 404–411, 2023.

[23] R. Chen, P. Qiu, P. Song, B. Deng, Z. Wang, and Y. He, “Masonry shell
structures with discrete equivalence classes,” ACM Trans. on Graph.
(SIGGRAPH), vol. 42, no. 4, pp. 115:1–115:12, 2023.

[24] D. Khan, C. Bohak, and I. Viola, “Dr. KID: Direct remeshing and k-set
isometric decomposition for scalable physicalization of organic shapes,”
IEEE Trans. Vis. & Comp. Graphics (IEEE VIS), vol. 30, no. 1, pp. 705–
715, 2024.

[25] M. Eigensatz, M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann, and
M. Pauly, “Paneling architectural freeform surfaces,” ACM Trans. on
Graph. (SIGGRAPH), vol. 29, no. 4, pp. 45:1–45:10, 2010.

[26] H. Zimmer, M. Campen, D. Bommes, and L. Kobbelt, “Rationalization
of triangle-based point-folding structures,” Comp. Graph. Forum (Euro-
graphics), vol. 31, no. 2, pp. 611–620, 2012.

[27] C. H. Lee, A. Varshney, and D. W. Jacobs, “Mesh saliency,” ACM Trans.
on Graph. (SIGGRAPH), vol. 24, no. 3, pp. 659–666, 2005.

[28] M. Dunyach, D. Vanderhaeghe, L. Barthe, and M. Botsch, “Adaptive
remeshing for real-time mesh deformation,” in Eurographics - Short
Papers, pp. 29–32, 2013.

[29] M. Botsch and L. Kobbelt, “A remeshing approach to multiresolution
modeling,” in Proc. Eurographics Symposium on Geometry Processing,
pp. 189–196, 2004.

[30] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler, “A local/global
approach to mesh parameterization,” Comp. Graph. Forum (SGP),
vol. 27, no. 5, pp. 1495–1504, 2008.

[31] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: An
overview,” WIREs Data Mining and Knowledge Discovery, vol. 2, no. 1,
pp. 86–97, 2012.

[32] G. Guennebaud, B. Jacob, et al., “Eigen v3,” 2010. url-
http://eigen.tuxfamily.org.

[33] A. Jacobson, D. Panozzo, et al., “libigl: A simple C++ geometry
processing library,” 2018. https://libigl.github.io/.

[34] R. Chen, Z. Wang, P. Song, and B. Bickel, “Computational design of
high-level interlocking puzzles,” ACM Trans. on Graph. (SIGGRAPH),
vol. 41, no. 4, pp. 150:1 – 150:15, 2022.

[35] P. Song, “Interlocking assemblies: Applications and methods,” in Mate-
rials Today: Proceedings (International Conference on Additive Manu-
facturing for a Better World), vol. 70, pp. 78–82, 2022.

[36] K. J. Lee, R. Danhaive, and C. T. Mueller, “Spherical harmonic shape
descriptors of nodal force demands for quantifying spatial truss con-
nection complexity,” Architecture, Structures and Construction, vol. 2,
pp. 145–164, 2022.

[37] P. Song, C.-W. Fu, P. Goswami, J. Zheng, N. J. Mitra, and D. Cohen-
Or, “Reciprocal frame structures made easy,” ACM Trans. on Graph.
(SIGGRAPH), vol. 32, no. 4, pp. 94:1–94:13, 2013.

[38] P. Song, C.-W. Fu, P. Goswami, J. Zheng, N. J. Mitra, and D. Cohen-
Or, “An interactive computational design tool for large reciprocal frame
structures,” Nexus Network Journal, vol. 16, pp. 109–118, 2014.

Pengyun Qiu was a research assistant in com-
puter graphics laboratory, Singapore University of
Technology and Design (SUTD). He received his
Bachelor of Science degree from Nanjing University
of Science and Technology in 2022 majoring in
Information and Computing Science. His research
interest is computer graphics.

Rulin Chen is a Postdoctoral Research Fellow in
the Computer Graphics Lab, Singapore University of
Technology and Design (SUTD), where he received
his doctoral degree in 2024 under the supervision
of Prof. Peng Song. Prior to joining SUTD, he
received his bachelor’s degree from Shantou Uni-
versity in 2020. His research interest is in computer
graphics, with a focus on computational assemblies.
He received SIGGRAPH Technical Papers Award
Honorable Mention in 2022.

Peng Song is an Assistant Professor at the Pillar of
Information Systems Technology and Design, SUTD
since 2019. Prior to joining SUTD, Peng was a
research scientist at EPFL, Switzerland. He received
his PhD from Nanyang Technological University,
Singapore in 2013, his Master’s and Bachelor’s
degrees both from Harbin Institute of Technology,
China in 2010 and 2007, respectively. His research
interest is in computer graphics, with a focus on ge-
ometric modeling, computational design, and com-
putational fabrication. He is an Associate Editor of

Computers and Graphics (Elsevier) and Graphical Models (Elsevier). He
received SIGGRAPH Technical Papers Award Honorable Mention in 2022
and Shape Modeling International Best Paper Award in 2024.

Ying He is an Associate Professor in the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. He received his
Bachelor and Master degrees in Electrical Engineer-
ing from Tsinghua University, Master and Ph.D.
degrees in Computer Science from Stony Brook
University. His research interests fall into the general
areas of visual computing and he is particularly
interested in the problems which require geometric
analysis and computation. He is an Associate Editor
of Journal of Computational Visual Media (Springer)

and Computer Graphics Forum (Wiley). He regularly serves on the Technical
Program Committee for major research conferences in geometric modeling
and computer graphics.

	Introduction
	Related Work
	Problem Formulation
	Computational Framework
	Clustering
	Local Mesh Optimization
	Decrease Kvn
	Decrease Ken
	Decrease Kvn and Ken

	Global Mesh Optimization
	Results
	Conclusion and Future Work
	References
	Biographies
	Pengyun Qiu
	Rulin Chen
	Peng Song
	Ying He

