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Fig. 1. (a) Input model with user-provided parts geometry and motion; (b) wind-up mechanism constructed by our method; (c) 3D-printed parts (top two

rows) and spring motor (bottom); and (d) assembled toy (9.2×6.7×6.4cm3
; and 16.1g shell + 7.9g motor + 7.3g mechanism).

Wind-up toys are mechanical assemblies that perform intriguing motions

driven by a simple spring motor. Due to the limited motor force and small

body size, wind-up toys often employ higher pair joints of less frictional

contacts and connector parts of nontrivial shapes to transfer motions. These

unique characteristics make them hard to design and fabricate as compared

to other automata. This paper presents a computational system to aid the

design of wind-up toys, focusing on constructing a compact internal wind-up

mechanism to realize user-requested part motions. Our key contributions

include an analytical modeling of a wide variety of elemental mechanisms

found in common wind-up toys, including their geometry and kinematics,

conceptual design of wind-up mechanisms by computing motion trans-

fer trees to realize the requested part motions, automatic construction of

wind-up mechanisms by connecting multiple elemental mechanisms, and an

optimization on the part and joint geometry with an objective of compacting

the mechanism, reducing its weight, and avoiding collision. We use our

system to design wind-up toys of various forms, fabricate a number of them

using 3D printing, and show the functionality of various results.

CCS Concepts: • Computing methodologies → Shape modeling; • Ap-
plied computing → Computer-aided manufacturing;
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1 INTRODUCTION

Wind-up toys have a long history dating back to an early design of a

wind-up lion by Leonardo da Vinci for welcoming Louis XII. Today

they come as lightweight toys with compact internal mechanical

assemblies that are powered by clockwork motors attached to a

spring key. Once such a key is rotated to tighten the spring and

released, the stored potential energy drives the toy’s internal me-

chanical parts, which in turn drive the end-effector parts of the toy

to perform intriguing motion(s). Examples include moving along a

designated path, swinging body parts, or combinations of multiple

motions over time and space. Fig. 2(a) shows a typical wind-up toy

that moves along a wobbling path while swinging its tail.

Compared to mechanical assemblies in previous research [Bächer

et al. 2015; Ceylan et al. 2013; Coros et al. 2013; Thomaszewski et al.

2014; Zhu et al. 2012], wind-up toys have several distinctive char-

acteristics. First, they are driven by a simple spring motor that can

only give out limited energy and torque. Second, their parts usually

perform simple periodic motions that are only roughly specified.

Third, they often have a small lightweight body, particularly for

those that perform locomotion. Lastly, they are usually presented as
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Fig. 2. An example wind-up toy (see its live motion in supp. video). (a) It

moves along a curved path while swinging its tail; (b) the internal wind-up

mechanism and motor; and (c&d) nontrivial parts for motion transfer, e.g.,

from a continuous rotation (spring motor) to a periodic swing (tail).

cartoon shapes with the wind-up mechanism and motor enclosed

inside. Considering these characteristics, wind-up toys call for com-

pact internal mechanisms that incur less frictional force, reduce

avoidable energy loss, and offer richer motion variants.

In mechanics, a kinematic pair is a joint between two rigid com-

ponents that keep them in contact under relative motion. In general,

there are two families of kinematic pairs based on the type of con-

tacts [Ambekar 2007]: (i) lower pairs (e.g., linkages, pulley and belt)

with surface contacts, and (ii) higher pairs (e.g., gears, cam and

follower) with point, line, or curve contacts; see the red boxes in

Fig. 2(b & c) for an example. Compared with lower pair joints, higher

pair joints have larger contact stress due to smaller contact areas,

but enjoy smaller friction due to low relative sliding between the

contact surfaces and larger diversity of motions that the associated

parts can perform. However, motions performed with the higher

pair joints are usually not as precise as those with the lower pair

joints [Ambekar 2007]. Considering these features, wind-up toys

heavily employ higher pair joints to transfer motion.

In this paper, we present an interactive system to aid the design and
fabrication of wind-up toys, motivated by the use of 3D printing for

making personalized wind-up toy designs. Particularly, we focus on

automated construction of internal wind-up mechanisms to realize

user-requested part motions. This problem involves several unique

challenges that were unexplored in previous works. First, unlike

the hand-operated cranks and electric motors employed in previous

works, common spring motors in wind-up toys provide only small

torque. To drive the various toy parts, such torque has to overcome

both friction (contacts) and weight (parts). Second, wind-up toys

employ a rich variety of higher pair joints for transferring different

types of motions; many of them have not been explored. Lastly,

connector parts inside wind-up toys have nontrivial shapes (see

Fig. 2(c & d)); they are specially designed for transferring motions

while being able to fit inside the toy with minimized weight.

Tomeet these challenges, our key idea is to construct and optimize

a compact and lightweight wind-up mechanism to progressively

transfer motion from the internal spring motor to toy parts through

higher pair joints. Our work has the following contributions:

• First, by exploring common wind-up toys, we constructed a table

of elemental mechanisms that involve higher pair joints, and cat-

egorized a wide range of fundamental motion transfer patterns.

Then, for each elemental mechanism, we modeled and parame-

terized the geometry of the associated joints, parts, and support

structures, and formulated analytical equations to compute the

kinematics of parts from the associated geometric parameters.

• Next, to produce conceptual designs, we developed computational

methods to automatically enumerate all possible valid mechanism

designs composed from the elemental mechanisms, and to select

candidate designs with fewer mechanical parts and shorter kine-

matic chains; this helps reduce the mechanism’s complexity and

weight, as well as the friction involved in the mechanism.

• Third, we turned each conceptual candidate design into a working

mechanism with full geometry by connecting the involved ele-

mental mechanisms from the driving source (usually composed

of a round cam) to the toy’s end-effector parts recursively.

• Lastly, we devised an optimization model to maximize the simi-

larity between the user-requested part motions and resulting toy

motions, to compact the wind-up mechanism, and to minimize

its weight, using a coarse-to-fine optimization model. Such opti-

mization also aims to keep the mechanism inside the toy’s body

without self-collision or collision with the spring motor and body

shell, for both static and dynamic conditions.

We implemented a prototype system for our method, and vali-

dated it by designing and fabricating wind-up toys of various forms

using 3D printing, and then showing the functionality of these re-

sults; see Fig. 1 for one of them. Moreover, we recruited several

users (without background knowledge in mechanical designs) to

use our system. Results show that all of them can make use of our

system to design their own wind-up toys.

2 RELATED WORK

Wind-up mechanism, also known as clockwork mechanism [Trotoys

2016; Woodford 2016], generally employs a winding key for one

to deposit energy in an internal metal spring. Once released, the

spring triggers the attached shaft to rotate and drive the motions

of the toy parts through the various mechanisms inside the toy.

Although hugely popular as lightweight small toys, to the best of

our knowledge, this is the first work that presents a computational

system on constructing mechanisms in wind-up toys.

Mechanism modeling assumes that the mechanism already exists

and considers the geometry and motion of the participating me-

chanical parts. For example, Mitra et al. [2010] visualizes the motion

of a given mechanism by inferring the motions of individual parts

and their interactions based on the geometry of the parts, while

others focus on modeling 2Dmechanisms for 3D fabrication [Hergel

and Lefebvre 2015], reconstructing existing mechanisms from mul-

tiple images [Xu et al. 2016], or creating joints in mechanical ob-

jects [Ureta et al. 2016].

Mechanism design involves a conceptual design stage that de-

scribes the input motion and target output motion, identifies the

type of mechanical parts, and extracts their associated parameters

for realizing the user-specified tasks. Rather than requiring expert

designers to manually design such mechanisms, researchers have
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Fig. 3. Overview of our system. (a) Segmented Teapot model (i.e., body, handle, spout, and lid) with user-provided motion on each end-effector part (motion

arrows and axes colored in red); (b) our system first constructs motion transfer trees to guide the selection of elemental mechanisms; (c) then, it orientates and

connects elemental mechanisms to form an initial wind-up mechanism, (d) optimizes the joints and parts in each elemental mechanism with a kinematic

analysis, subject to fabrication and collision constraints, and (e) post-processes the toy to refine parts boundary shape, and create the body shell and support

structures for fabrication. (f) The 3D-printed wind-up toy result.

attempted to automate the process by identifying a finite set of

basic mechanisms as building blocks for constructing abstract rep-

resentations of complex mechanisms. For example, Chiou and Srid-

har [1999] developed a matrix representation scheme to automate

the conceptual design process by decomposing a given task into

simpler sub-tasks and matching each sub-task with predefined kine-

matic building blocks that transform basic motions. Han et al. [2006]

abstracted the underlying design concepts in existing mechanisms,

and developed a case-based framework to reuse prior design con-

cepts. Once a conceptual design is available, the next stage is to find

the associated model parameters and spatial layout of the mechani-

cal parts. This is generally achieved by identifying the geometric

constraints among the parts (e.g., mate and align) and computing

the parts parameters and layout accordingly [Li et al. 2002; Peng

et al. 2006]. In this work, we also design with modular mechanisms,

but we focus on compact wind-up mechanisms with higher pair

joints. In short, we enumerated a variety of elemental mechanisms

for wind-up toys, classified them by their motion transfer patterns,

modeled their kinematics and connections, and devised methods to

parameterize and optimize their joints and layouts for producing

working wind-up mechanisms. This is a complete system that has

not been developed in previous works.

Fabricating mechanism designs has been heavily investigated re-

cently in computer graphics literature to facilitate design of person-

alized mechanical assemblies. Zhu et al. [2012] created animated

toys by computing mechanical parts that perform linear and cir-

cular motions driven by cam and crank-sliders that are arranged

in a box underneath the toy display. Coros et al. [2013] used pa-

rameterized mechanisms composed of gears and linkages to drive

more complex motions of a mechanical character, where the end

effectors can display 2D motion along user-sketched curves. Ceylan

et al. [2013] arranged specialized mechanical oscillators composed

of gears and linkages at joints of a humanoid character, and con-

nected them through belts and pulleys to drive the character’s limbs

based on an input mocap sequence. More recently, Thomaszewski

et al. [2014] and Bächer et al. [2015] presented interactive methods

for users to edit planar linkage-based systems, while safeguarding

the edits against various degeneracies, while Bharaj et al. [2015] and

Megaro et al. [2015] presented computational methods for designing

legged robots and characters that can walk on the ground driven by

off-the-shelf servo motors installed at the limbs.

Similar to [Zhu et al. 2012] and [Coros et al. 2013], we also con-

struct mechanisms by connecting a finite set of parameterized basic

mechanisms as building blocks. However, this work differs from

them in terms of the problem formulation, design requirements, and

building blocks. First, we focus on designing wind-up toys, where

the spring motor can only deliver limited force, and the mechanism

has to be kept inside a small toy body. Second, our problem requires

the mechanism to involve short kinematic chains with fewer parts,

and be sufficiently compact. Prior works do not have these require-

ments. Lastly, prior works reuse common building blocks such as

gears and linkages, while this work enumerates eleven elemental

mechanisms as building blocks, mostly with higher pair joints.

Assembly sequences focus on computational methods to support

non-expert users to design and fabricate assemblies [Schulz et al.

2014], for examples, assembly-free articulated models [Bächer et al.

2012; Calì et al. 2012], works-like prototypes [Koo et al. 2014], objects

and furniture design [Li et al. 2015; Zhou et al. 2014], interlocking

puzzles [Song et al. 2012], twisty puzzles [Sun and Zheng 2015], and

Iris folding [Igarashi et al. 2016]. Our work also indirectly contains

an assembly component, where we mainly consider the layout and

geometry of parts in a small body subject to kinematics and weight,

rather than the assembly ordering process.

3 OVERVIEW

Our system takes the following inputs: (i) a 3D mesh model that has

been pre-segmented into logical parts (see Fig. 3(a)); these segmented

parts are slightly moved away from the toy body to help avoid

collisions with the toy body when the parts perform motion; (ii)

user-prescribed motion (an axis and a range) for each segmented

toy part (shown with red axes and arrows in Fig. 3(a)); see Table 1

for the part motions supported by our system; and (iii) the pose of

the motor; our system puts it near the bottom of the 3D model as

its initial pose, but users may reposition it on demand.

Before presenting our system, we list the high-level requirements

identified by studying several existing wind-up toys in the market:

(i) They should have compact and lightweight wind-up mecha-

nisms that can be driven by small spring motors.

Table 1. Part motions supported by our system.
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Fig. 4. Elemental mechanisms we modeled in our system. Each mechanism includes a driver (blue), a follower (brown), and one or more fixed supporters (grey),

for transferring motion from the driver to the follower; see the equation below each mechanism, and also the red arrows next to each driver and follower. We

categorize the mechanisms into four groups (R, O, T, and OT) according to the motion of the driver.

(ii) They should use higher pair joints to shorten kinematic chains,

compact the mechanism, and reduce avoidable energy loss.

(iii) Themotion of external toy parts (end effectors) should roughly

resemble the prescribed target motions.

(iv) All internal parts of the mechanism should be contained inside

the toy body, and their motions should be collision-free.

To construct a wind-up mechanism from the given inputs, we

progressively consider the followings in the mechanical design:

• Abstract modeling. We consider the topology of the mechanism.

To this end, we build a table of elemental mechanisms to describe

the connecting joints (mostly higher pair) and their kinematic

properties, and construct candidate conceptual designs by selecting
and connecting elemental mechanisms; see Fig. 3(b).

• Geometry modeling. We need to consider the geometry of the

wind-up mechanism. To this end, from each candidate conceptual

design, we initialize the geometry of mechanical parts and joints

for the involved elemental mechanisms, and connect them to form

an initial wind-up mechanism; see Fig. 3(c).

• Optimization. For further compacting the wind-up mechanism

and maximizing the parts motion similarity, we optimize the

geometry and layout of parts and joints over the parameter space

of the associated elemental mechanisms; see Fig. 3(d).

• Post-processing and fabrication. Finally, we refine the boundary
shape of each mechanical part to further compact the mechanism,

construct a body shell, and divide it (if required), for accommo-

dating the internal wind-up mechanism; see Fig. 3(e). Besides, we

build support structures for holding the mechanical parts and

motor inside the toy, 3D-print the parts and shell, and assemble

them with the motor to create the final result; see Fig. 3(f).

4 MODEL ELEMENTAL MECHANISMS

By exploring the internal mechanisms in a large collection (around

40) of wind-up toys (see Fig. 5), we enumerate eleven elemental

mechanisms (abbreviated as eleMech) that build up the wind-up

mechanisms, each of which delivers a fundamental motion transfer

task; see Fig. 4. Each eleMech has three kinds of parts: (i) a dri-
ver, which initializes an eleMech’s motion, (ii) a follower, which
reacts and moves accordingly, and (iii) supporter(s), which are fixed

structures that constrain the motion of driver and follower. As in

Fig. 4 and throughout this paper, we consistently color them in blue,

brown, and grey, respectively. Note that we categorize the eleven

eleMechs into four groups: R, O, T, and OT, according to the motion

type of the driver; see again Fig. 4. Moreover, a driver can directly be

the motor cam (for group R), or it can be the follower of the parent

eleMech, if we chain up two eleMechs together.

There are two kinds of joints between contacting parts in an

eleMech: (i) driver-follower joint for motion transfer; and (ii) sup-
port joint between a supporter and its associated driver/follower.

Below, we first present how we model an eleMech’s geometry and

kinematics, and then present how we connect two eleMechs.

EleMech geometry. We model the geometry of an eleMech using

three sets of parameters (defined in the local space of the eleMech):

(i) Parameters of joints {Jjoint }. Since there are nine unique types
of joint geometry among the eleven eleMechs shown in Fig. 4,

we define geometric parameters for each of them; see Fig. 6.

Hence, given an eleMech, we enumerate the parameters of

each of its joints as its first parameter set.

(ii) Parameters for joints layout {Jlayout }. Besides {Jjoint }, the
positioning of joints over an eleMech’s driver and follower

also affects the kinematics. Such a layout is essentially 2D over

the major plane of driver and follower, so we take the 2D ori-

entation and position of each joint on driver’s and follower’s

major plane as an eleMech’s second parameter set.

(iii) Parameters for fabrication {Jf ab }. The third parameter set

includes the thickness of driver and follower, their bound-

ary shape (initially modeled as a rectangular box with cut-

away/protrusion for accommodating joints), and tolerance

Fig. 5. Some of the wind-up toys we purchased from the consumer market

for exploring the internal wind-up mechanisms.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 238. Publication date: November 2017.



Computational Design of Wind-up Toys • 238:5

Fig. 6. Driver-follower joints (top) and support joints (bottom) in the ele-

Mechs shown in Fig. 4. All are higher pair joints, except (b) and (g).

adapted onto the joints. Unlike the first two sets, these param-

eters affect mainly the fabrication but not the kinematics.

EleMech kinematics. The goal of modeling an eleMech’s kinemat-

ics is to be able to compute the follower’s pose from the driver’s

pose over time. We derive analytical equations to support the com-

putation by taking {Jjoint } and {Jlayout } as inputs. Further, we
derive inverse equations, again for each eleMech, to compute nec-

essary joint parameters ({Jjoint }) of its driver-follower joint given
the motion range of the driver; see Fig. 7 for an example. Please

see the supplementary material for the kinematic equations of each

eleMech and the accompanying video for the simulated motions.

EleMech motion transfer. Each eleMech shown in Fig. 4 can trans-

fer motion from one type (R, O, T, and OT) to another, possibly with
a change in orientation. For example, eleMech Rz→Tx transfers a

continuous rotation about the z axis to a periodic translation along

the x axis; see the axes icon on the left side of Fig. 4. Obviously, by

re-orientating this eleMech, we can obtain other motion transfer

patterns such as Rz→Ty and Rx→Ty. In fact, when we define the

eleven eleMechs shown in Fig. 4, they are unique upon rotation,

and we only consider axis-aligned motions for simplicity in early

stages. Therefore, by re-orientating each eleMech in different ways,

we can enumerate all possible axis-aligned motion transfer patterns

supported by the eleven eleMechs; see Table 2. Note also that for

now, we consider only axis-aligned orientation for motion transfer,

non-axis-aligned motion will be considered later when we optimize

a wind-up mechanism; see Section 6.

Fig. 7. Given the target motion range (θ1 and θ2 in (b & c)) of the driver, a

predefined value for r in (a), and the joint layout {Jlayout }, we can derive

the joint geometry {Jjoint } of this driver-follower joint accordingly, i.e., h
and w in (a). Please refer to the supplemental material for details.

Table 2. Motion transfer table. Rows denote driver motion and columns

denote follower motion. Each ✓ in a cell denotes a motion transfer pattern

supported by re-orientating an associated basic eleMech in Fig. 4 (black

means no rotation, while red, green and blue mean a rotation about x-, y-

and z-axis, respectively), and two ✓ in a cell means two successive rotations

on the basic eleMech. Note that we only need to consider Rz but not Rx
and Ry since only the motor produces a continuous rotation, and we fix the

motor’s rotational axis along z ; likewise, we consider only OzT, since OT
can only be produced by a continuous rotation, which must be Rz.

EleMech connection. To link together two eleMechs, where one

(parent) drives the other (child), the follower of the parent eleMech

(denoted as Fparent ) should merge with the driver of the child

eleMech (denoted as Dchild ), so that the parent’s driver can drive

the merged part, which in turn drives the child’s follower. To realize

such a connection, the motion type of Fparent and Dchild must be

the same. If so, we can first re-orientate the child eleMech while

fixing the parent in 3D, so that the major planes of Dchild and

Fparent align with each other. Next, we re-orientate and translate

the child eleMech over the aligned major plane to further align

Dchild ’s supporter(s) with Fparent ’s supporter(s). As a result, we
can merge Dchild and Fparent into a single part, whose motion is

constrained by common supporter(s); see Fig. 8 for three examples.

5 INITIALIZE WIND-UP MECHANISM

This section presents how we construct candidate conceptual de-

signs that roughly match the user-prescribed motions at the end

effectors (Section 5.1) and connect eleMechs into an initial wind-up

Fig. 8. Different cases of connecting two eleMechs (based on the type of

supporters), we merge the follower of the parent (left) with the driver of the

child (middle) into a single part in green (right).
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mechanism for a candidate design (Section 5.2). Although we may

produce non-axis-aligned motions by adjusting the joint orientation

in an eleMech, we consider only axis-aligned motions in conceptual

designs and wind-up mechanism initialization, since these two early

stages mainly aim for a coarse initialization of the mechanism.

5.1 Generate Candidate Conceptual Designs

To represent a conceptual design, we use a motion transfer tree
(see Fig. 3(b) for an example), where each node denotes a specific

motion about a principle axis and each edge denotes an eleMech that

transfers the motion from the associated parent node to the motion

at the child node. For the wind-up motors we employed, there are

two round cams, one on the left and one on the right (see inset

figure), which serve as the primary

drivers of the wind-up mechanism.

Hence, we define a motion trans-

fer tree, one for each cam, with a

continuous rotation about z-axis
(Rz) as the motion at root nodes.

Given the prescribed end-effector motions and an initial pose

of the spring motor in the object space of the toy (denoted as ST ),
we first transform each end-effector motion from ST to the motor

space (denoted as SM ); see the inset figure above. If a transformed

end-effector motion is not axis-aligned in SM , we find the closest

principle axis direction in SM as the axis of the end-effector motion

when constructing a conceptual design. Hence, in the motion trans-

fer tree, the internal and leaf nodes are always Ox, Oy, Oz, Tx, Ty,
Tz, or OzT, where suffix {x ,y, z} indicates the associated principle

axis in SM . Moreover, for each edge in the tree, the parent and child

nodes should have a driver-follower relationship, following one of

the motion transfer patterns in Table 2. Furthermore, to ensure short

kinematic chains, we define Dmax as the maximum tree depth; it is

set to be 3 in all our experiments.

Generate conceptual designs. There are three major steps in gen-

erating candidate conceptual designs. In the first step, for each

end effector, we exhaust all possible kinematic chains (with length

Fig. 9. All possible motion transfer chains with two or fewer eleMechs for

achieving Rz → Oz (the axis-aligned target motion).

Fig. 10. A typical example: (a) end effectors assigned to left and right cams;

(b) kinematic chains picked for each end effector; and (c) chains merged

into a motion transfer tree for each cam.

≤Dmax) that propagates Rz (motor) to the end effector’s target axis-

alignedmotion in SM . To do so, we first check if “Rz→target motion”

is already in Table 2; if so, we put it into a candidate set denoted

as Ci. Next, we treat Table 2 like a matrix, multiply it with itself,

and look for candidate chains with length = 2 for “Rz→...→target

motion”; see Fig. 9 for examples. We repeat the process until length

= Dmax. Given Dmax = 3, the number of possible chains for each

type of motion are 17 (Ox), 14 (Oy), 19 (Oz), 10 (Tx), 10 (Ty), 6 (Tz),
are 1 (OzT), respectively. Please refer to the supplementary material

for all these chains.

Denoting E as the set of end effectors, the second step enumerates

cases of partitioning E into two subsets, each to be driven by the

left or right motor cam; see Fig. 10(a & b) for a simple example.

For balanced mechanism layout, the partitioning should be more

even, so we consider only the cases that the number of end effectors

assigned to the two cams differs no more than two.

In the final step, we aim to pick one kinematic chain from each Ci
(see Fig. 10(b)) and merge the picked chains into a low-complexity

motion transfer tree for each cam with the following two strategies:

• First, given picked chains for different end effectors associated

with the same cam, we can merge them into a tree at their k-th
nodes, if all their nodes from the root to the k-th nodes are of the

same motion type correspondingly. Hence, by iteratively trying

different orders of merging the picked chains, we can form a tree

with minimal edges for each cam; see Fig. 10(c).

• Denoting C0 as the average number of chains among the Ci’s
and E0 as the average number of end effectors assigned to a cam

(roughly |E |/2), we will haveCE0

0
different ways of picking chains

from the Ci’s for forming a motion transfer tree with minimal

edges in a cam by using the first strategy. The second strategy

is for selecting the best M left+right trees with the following

criteria: (i) fewer eleMechs (say N ) and (ii) shorter kinematic

chains. Denoting Li as the length of the picked chain from Ci,
we formulate the cost function as N + γmean({Li }), where γ is a

weight set as 2, andM set to be 10000. After we obtain the best

M left+right trees for each case of partitioning E, we further use
the cost function to compare candidate trees from different cases

and output the best M left+right trees (among all cases) as the

resulting candidate conceptual designs.

For theM conceptual designs, we explore them in the later stages

of the pipeline in ascending order of their costs until we find a desir-

able wind-up mechanism. Hence, the number of actual conceptual

designs that we need to explore is usually much lower thanM ; see

Section 7 for the actual numbers involved in the experiments.
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5.2 Initialize Mechanism Geometry

Next, we aim to initialize a wind-up mechanism for each candidate

conceptual design, such that the mechanism is functioning but may

not stay inside the toy body, and its end effectors may not follow

the prescribed motions. Given a motion transfer tree associated

with left or right cam, we first pick eleMechs associated with the

tree edges, initialize them with default geometric parameters (due

to space limits; please see supplemental material for details), and

orientate them based on their motion patterns in Table 2. Then, we

connect them from root until leaves in a breadth-first manner to

form an initial geometry of the wind-up mechanism in SM .

Particularly, if a node has multiple child eleMechs, we have to

merge the parent’s follower with the drivers of all its children into

a single merged part, so that the parent’s follower can drive all

the child eleMechs. In this way, the major plane of the parent’s

follower will contain the parent’s driver-follower joint, its support

joint(s), as well as the driver-follower joints of all its children; see

Fig. 11(b-d). However, if the driver-follower joints of the children are

too close to one another, the merged part will become structurally

weak (see Fig. 11(b)), or even malfunction if the joints overlap. On

the other hand, if the joints are too far apart (see Fig. 11(c)), the

merged part will become excessively large. Hence, we compute the

distance between joint pairs on the major plane of the merged part,

and move the driver-follower joints away from any other if they

are too close to any other joint; see Fig. 11(d). Clearly, repositioning

a driver-follower joint on the major plane may lead to undesired

motion or even faulty eleMechs; we leave it to the optimization

stage for further adjusting the joint layout parameters {Jlayout } for
achieving the target kinematics (see Section 6.2 for details).

Lastly, we employ the inverse equations described in Section 4 to

deduce {Jjoint } of each eleMech from {Jlayout } given the driver’s

motion range, starting from the root. In addition, we fit a bounding

box to enclose all the joints on the major plane of each merged

part to initialize {Jf ab }. However, it is important to note that these

initializations are not final. Later in the optimization process, we

will update {Jlayout } over eleMechs for meeting various criteria,

including matching the prescribed end-effector motion. In addition,

{Jjoint } and {Jf ab } will be recomputed accordingly.

6 OPTIMIZE WIND-UP MECHANISM

6.1 Formulate the Optimization

Configuration space. Our optimization model considers the fol-

lowing sets of independent variables, which together make up a

configuration of the wind-up mechanism (denoted as д):

(i) joint layout parameters {Jlayout } of each eleMech; and

(ii) motor’s pose (orientation and position) Pm in toy space ST .

We define the wind-up mechanism relative to the motor, so it

transforms with the motor in ST when we modify Pm . Moreover,

note that even though the initial wind-up mechanism only exhibits

axis-aligned motions, the optimization, which modifies the joint

orientation in {Jlayout } on a part’s major plane, can adjust the

relative orientation between connected eleMechs. As a result, we

can allow end effectors to exhibit non-axis-aligned motions.

Cost function. We formulate the following cost function to charac-

terize the compactness of a wind-up mechanism, to avoid collision

Fig. 11. Connect a parent eleMech to two child eleMechs. We first connect

the parent eleMech with (a) child #1 eleMech, and then with (b-d) child

#2 eleMech. Three {Jlayout } examples are shown: (b) the merged part is

structurally weak (see the red circle), since the joints are too close to one

another; (c) the merged part is large and heavy, since the joints are too far

from one another; and (d) the merged part in this example is desired.

between mechanical parts and the body shell, and to make the end

effectors follow the prescribed end-effector motions:

F (д) = ω1F1(д) + ω2F2(д) + ω3F3(д) + ω4F4(д) (1)

with F1 =

N∑
i=1

vol(Pi ) ,

F2 = max

t ∈T
max

i, j
ΩS(Ji, j ) ,

F3 =
∑
e ∈E

(
λ | cos

−1(n(e) · n̄(e))| + | |c(e) − c̄(e)| |
)
,

and F4 =
∑
e ∈EO

λ
(
|a(e) − ā(e)| + |b(e) − ¯b(e)|

)
+

∑
e ∈ET

(
|a(e) − ā(e)| + |b(e) − ¯b(e)|

)
,

where:

• F1 is the approximate volume of all the mechanical parts, where Pi
is the i-th part, typically the follower of the i-th eleMech (i=1..N );

and vol(Pi ) is the volume of the tightest bounding box that en-

closes the joints on Pi . Note that the number of internal mechani-

cal (follower) parts equals the number of eleMechs.

• F2 denotes the maximum signed distance among the signed dis-

tances (ΩS) of all the joints from the toy’s body shell S over time,

where Ji, j is the j-th joint on part Pi ; and ΩS is the signed distance
field, whose value is zero on S, negative inside S, and positive

outside S. Hence, to keep all the joints (and parts) inside the toy,

all ΩS(Ji, j ) should be negative. Note that we have to simulate part

motions in the mechanism over a full period with |T |=36 samples,

in order to find all Ji, j over time.

• F3 measures the similarity between end-effector motion and pre-

scribed motion for all end effectors (E). In the user input specifica-

tion, for translation, c̄ is the starting point and n̄ is the translation

vector, while for other motions (R, O and OT), n̄ is the rotational
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Fig. 12. (a) Inputs; (b) initial mechanism; (c) coarsely-optimized mechanism, where some parts relocate to different sides (see green arrows); (d) finely-optimized

mechanism, where some joints (see the green circle) reorientate on the major plane to better match the prescribed motion; (e) boundary shapes of parts are

refined; and (f) end-effector parts connect with associated external toy parts (see green circles).

axis and c̄ is the midpoint along the user-specified rotation axis

line. On the other hand, c(e) is the motion center of end effector

e and n(e) is its motion vector (translation vector or rotational

axis) in the current wind-up mechanism. We measure angles ob-

tained from cos
−1

in radian, and use λ as a weight (set as 1.7 in

all experiments) to combine angles and distances.

• F4 measures the motion range similarity for end effectors (EO and

ET) that exhibit periodic motions, i.e., oscillating rotation (O) and

translation (T), where [a,b] is the motion range and [ā, ¯b] is the
target motion range. We express motion ranges using angles in

radian for the case of O and using lengths for the case of T, so we
again use λ to combine the two quantities.

• ω1, ω2, ω3, and ω4 are weights set as 0.13, 0.08, 3.0, and 0.5, re-

spectively, in all our experiments.

The optimization goal is to search for a configuration (д) that
minimizes F . Therefore, F1 encourages a compact and lightweight

wind-up mechanism, where the joints on each part are close to one

another, thus leading to smaller mechanical parts that can be gener-

ated later in the post-processing stage. Then, F2 helps to compact

the whole mechanism and fit it inside the toy body without collision

by encouraging the joints (and thus parts) to be far away from the

shell. While both F3 and F4 aim to match the prescribed end-effector

motions, F3 focuses on the motion geometry and F4 focuses on the

motion range. Note also that we consider F2 as a term in the mini-

mization rather than as a constraint, since the joints in the initial

mechanism may not fit inside the toy body, and formulating it a

term also helps to compact the whole mechanism.

Constraints. We consider three types of constraints in the opti-

mization to avoid collisions (i) between parts and motor over the

motion simulation period (T ), (ii) among different parts over T , and
(iii) among different joints on the major plane of each part. In our

implementation, we use oriented bounding boxes (OBB) to enclose

each joint and each part (base geometry) for collision detection. Note

that OBB is sufficient for detecting part collisions in our problem

because we only need to care about the collision between parts that

are not connected by joints. Parts connected with joints are ensured

to be collision free (they only contact each other), since they form

an eleMech with well-defined kinematics; see Section 4.

6.2 Solve the Optimization

Since we ignore the geometry of the body shell, external toy parts,

and motor when initializing a wind-up mechanism, the initial mech-

anism may be too large to fit inside the toy body and it may collide

with the motor when the wind-up toy is in motion. Moreover, the

end-effector part (e.g., the follower of a leaf node) may be too far

from its associated external toy part in ST (see Fig. 12(b)), thus re-

quiring a long physical connector to link themup formotion transfer.

Hence, we first address these issues using a coarse optimization, and

then further refine the mechanism with a fine optimization. Note

that conventional gradient descent method is infeasible to solve this

optimization problem, since we cannot derive an explicit analytical

gradient of the cost function F (д).
Positioning driver-follower joints. Before presenting the optimiza-

tion methods, we first discuss the constraints in positioning driver-

follower joints on major plane. Besides global space such as toy

space ST and motor space SM , we define local space SP on each

major plane in the wind-up mechanism. The x- and y-axis of SP
aligns with the major plane, and its origin locates at the supporter’s

center on the plane; see the axis labels (in red) in Figs. 7 and 13 for

examples. Indeed, {Jlayout } is defined in this local space.

From the kinematics equations and virtual simulations we derived,

we find that most eleMechs (see Fig. 4) allow us to position driver-

follower joints freely in SP , as long as the joint does not collide

with others. Of course, the follower’s motion range may change,

but it can always perform the same type of motion. However, for

some eleMechs such as Oz→Oz , moving its driver-follower joint

may lead to a faulty eleMech; please refer to the supplementary

material. In these cases, we precompute feasible parameter ranges

for {Jlayout } to constrain the coarse and fine optimizations.

Coarse optimization. The goal of coarse optimization is to adjust

the layout of parts in the mechanism by trying different ways of

re-arranging each driver-follower joint on its major plane, for com-

pacting the mechanism (F1 and F2 in the cost function; see Eq. (1))

and for making each end-effector part close to its target location

next to the external toy part (F3 in the cost function).

As a coarse optimization, it ignores the matching of motion range

(F4), and considers only a rough layout of joints represented by

Fig. 13. Four of the eight choices in roughly positioning a driver-follower

joint in the local space SP of the driver’s major plane.
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Fig. 14. Some of the wind-up toys produced from our system; from left to right: Bunny, Horse, Mickey, Dragon, Tree, and House. From top to bottom: input

models and prescribed toy part motions, the optimized wind-up mechanisms, and the associated motion transfer trees, where we color the nodes connected to

the external toy parts in orange.

the signs of joint coordinates in the local space. In particular, we

consider the sign of Z coordinates in SP , since repositioning joints

along Z allows us to move the follower’s major plane above or below

the driver’s major plane, so we can further compact the mechanism

and better match the parts motion; see the left two cases in Fig. 13.

Therefore, there are eight combinatorial choices for each joint, and

8
N

choices altogether in the search space, since the number of

driver-follower joints equals the number of eleMechs (N ) in the

wind-up mechanism. Note that coarse optimization is important

in the sense that it allows topological modification, which is not

considered in the fine optimization.

Such search space could still be too large for exploration, so we

resort to a heuristic, motivated by the fact that in the initial mecha-

nism, the major planes and part motions are all axis-aligned. Hence,

we explore the signs of joints along each of the three dimensions in

motor space (SM ) one by one. First, for each joint, we identify the

joint coordinate (X, Y, or Z) that aligns with the Z-axis of SM , so

there are 2
N

choices of signs. Since N is not that large (N≤10 in

all our experiments), we simply exhaust all possible combinations

of signs, initialize corresponding mechanisms, discard those that

violate the optimization constraints, and rank the remaining cases

based on the simplified cost function (without F4). We then pick

the best Nc configurations as candidates (Nc=10), repeat the same

process for each of the other two dimensions in SM , and output the

configuration with the minimal cost.

Fine optimization. Next, the fine optimization aims to further

refine the output from coarse optimization for minimizing the whole

cost function, particularly for better matching the prescribed end-

effector motions and their ranges. There are 4N + 6 variables, since

Fig. 15. Plot of cost function over iterations (see Eq. (1)) during the fine

optimization process, for Bunny shown in Fig. 12(d).

each driver-follower joint has a 3D position and a 2D orientation

on the major plane in SP , while the motor pose Pm includes a 3D

position and a 3D orientation (in three euler angles).

We use simulated annealing to minimize the full cost function

with two operators: (i) modify joint parameters; and (ii) modify

motor pose. The annealing parameter is initialized to be 10, and de-

creases by 10% for every 50 iterations. After each move, we construct

a mechanism from the new configuration, simulate its motion over

a full simulation period (T ), and evaluate it with the cost function

to decide whether to accept the move or not. The optimization ter-

minates when it cannot further reduce the cost, or has reached the

maximum number of iterations (which is set as 1000); see Fig. 12(d)

for the optimized result on Bunny and Fig. 15 for the corresponding

plot of the cost function values in the optimization process.
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Fig. 16. Wind-up toys designed by the participants in the user evaluation and generated from our system accordingly; from left to right: Box, Flower Pot,

Minion, Jack O’Lantern, Crab, and Gecko. From top to bottom: input models and user-prescribed toy part motions, the optimized wind-up mechanisms, and

the associated motion transfer trees.

7 EXPERIMENTAL RESULTS

Mechanism finishing. After the optimization, we still have a few

post-processing steps to complete the wind-up toy, among which

the last three steps require certain amount of manual effort:

(i) First, our system refines the boundary of each part to compact

the part and reduce its weight; see Fig. 17 for an example that

illustrates the detail of the procedure. After that, we create

tolerance around each joint on the part.

(ii) Second, our system connects each end effector to its associated

external toy part using an elongated cuboid as the connector

geometry; see the green circles in Fig. 12(f). However, using

this simple strategy, the cuboid may collide with other me-

chanical parts. When a collision is detected by the system, the

user has to manually modify the connector geometry to avoid

the collision, e.g., using a U-shaped connector.

(iii) Third, the user manually divides the toy’s body shell into two

halves, and requests the system to create connectors between

the supporters of each mechanical part and the shell. This is

done similar to the way how end effectors are connected.

Fig. 17. Procedure to refine the boundary shape of mechanical parts: (a)

given joints on major plane; (b) we compute a convex hull (in green) that en-

closes the joints with a small margin (in blue); (c) we then identify structural

lines (in blue) in-between joints and crop the convex hull without cutting

through the structural lines (in red); and (d) lastly, we round the corners of

the shape (in orange).

(iv) Lastly, we 3D-print the refined mechanical parts and the body

shell parts, and then manually paint the 3D-printed parts and

assemble the parts with the motor into the target toy.

Results. We implemented our system in C++ and tested it on a

desktop PC with a 3.4GHz CPU and 8GB memory. Fig. 14 showcases

some of the results produced by our system.While most external toy

parts connect to the leaf eleMechs in the motion transfer trees, our

system also allows an external toy part to connect to intermediate

nodes in the tree to help achieve even more compact mechanisms;

see House in Fig. 14 for an example. Note that the phase of the

end-effector parts can be controlled by adjusting the phase of the

associated cam. Please watch the supp. video for the animations.

User evaluation. We recruited six participants (5 males and 1

female) aged 21 to 24. All of them had experience of playing with

wind-up toys from the consumer market, and one of them has

fabricated his own models using 3D printing. Before the evaluation

started, we introduce to each participant the requirements on the

input models and part motions supported by our system. Then, each

of them searched for desired models by browsing photos in the

Internet, and we downloaded/created the chosen 3D model for them.

After that, we segmented each model into parts according to the

participant’s request, and the participant can then use our system

to design a wind-up toy by specifying the end-effector motions.

Fig. 16 presents the six wind-up toys designed by the participants.

The input models specified by them have a wide variety, including

human-made object, cartoon character, fruit, and animal. After we

presented the simulation of the designed toys to them, all of them

felt that the mechanisms are impressive and the resulted toymotions

are close to what they want, although two of them expected a larger

motion range for the end effectors. Two of the participants also
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Fig. 18. Four of the six wind-up toys (top) that we have fabricated and assembled from 3D-printed parts (bottom). From left to right: Bunny (13.0g shell + 7.8g

motor + 9.0g mechanism), Horse (15.3g shell + 5.9g motor + 26.1g mechanism), Flower Pot (34.8g shell + 5.8g motor + 8.0g mechanism), and House (48.9g

shell + 6.0g motor + 6.4g mechanism). See their statistics in Table 3.

pointed out that the parts motion can be more natural by better

motion synchronization, e.g., the eyes of Jack O’Lantern, while

three participants suggested that our system can further support

more variety of toy locomotion, such as crawling for Crab.

Statistics. Table 3 summarizes the statistics of all the results pre-

sented in the paper; from top to bottom: Angry bird in Fig. 1,

Teapot in Fig. 3, Bunny to House in Fig. 14, and then the six results

designed by users in Fig. 16. The second to fifth columns from the

left show basic information about the results. The number of toy

part motions (or end effectors) in user inputs ranges from three to

eight, while the wind-up toys produced by our system have five to

ten eleMechs and three to six kinematic chains. The rightmost three

columns in the table show some of the timing statistics. Overall,

Table 3. Statistics of our results. The columns from left to right refer to

the name of the data sets, the number of end effector parts (motions), the

number of chains in the motion transfer tree, maximum length among the

chains, the number of eleMechs, time to generate the conceptual designs,

and time to coarsely and finely optimize a single initialized mechanism.

the average time taken to generate a set of candidate conceptual

designs, to coarsely optimize a single mechanism, and to finely opti-

mize a single mechanism are ∼16, ∼35, and ∼190 sec., respectively.

For mechanism initialization, it can be done in the order of ten

milliseconds, e.g., 40 millisec. for Teapot. This step has to be done

very quickly, since every time the optimization process modifies

a mechanism’s configuration, it needs to initialize a new mecha-

nism, simulate its kinematics, and check for collision, etc. Lastly,

the total time taken to generate a desirable wind-up mechanism

from the user inputs takes from 20 minutes to 6 hours for the results

presented in Table 3. Overall, we found that the total time taken is

roughly proportional to the number of explored conceptual designs

(or the number of candidate mechanisms), which is 10 to 80 in all

our experiments, depending on the complexity of the mechanism.

Hence, the total time roughly equals to the number of explored con-

ceptual designs times the time taken to coarsely and finely optimize

one mechanism (see the rightmost two columns in Table 3). Note

also that these timing numbers exclude the time taken to prepare

and segment the input model, and the manual work involved in the

mechanism finishing step during the post processing.

Fabrication. We fabricate six of our wind-up toy results using a

high-resolution desktop SLA printer (printing volume: 130×130×180

mm
3
, printing resolution: 0.1mm) with photosensitive resin material

(density: 1.10-1.15 g/cm3
). It took around five hours to print all the

parts of a toy, where most of the time was actually used to print the

body shell parts. After 3D printing, we further paint the parts and

shells with different colors. Figs. 1, 3, and 18 show the six wind-up

toys that we have fabricated, fromwhich we can see our constructed

mechanisms (and their parts) look like those of wind-up toys in

consumer market (Figs. 2 and 5). Please watch the supplementary

video for the animations.
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Fig. 19. Comparing mechanisms produced from our system (top) and from

the baseline method (bottom). Although both results are functional, our

optimized Teapot has shorter kinematic chains (top left), a more compact

mechanism with smaller mechanical parts (top middle), and shorter con-

nectors to join the end effectors with external parts (see the red circles).

Comparison with a baseline. We compare our method with a base-

line method, which has the following two steps. First, the baseline

method generates a conceptual design by randomly selecting kine-

matic chains from the enumerated candidates and merging them

into a motion transfer tree; then, it initializes a wind-up mecha-

nism simply by connecting the associated eleMechs following the

transfer tree without further optimization. Such a result will likely

have collision problems among the mechanical parts, body shell

and motor. Hence, we repeat the above two steps and continue to

generate more mechanisms until we find a valid one.

Fig. 19 shows the comparison result, from which we can see that

our optimized Teapot has shorter kinematic chains and a more

compact mechanism with smaller mechanical parts. We fabricate

both results, and show that our optimized Teapot can perform mo-

tions for a longer duration (ours: 10 seconds vs baseline: 6 seconds)

and move over a longer distance (see supplementary video), given

roughly the same amount of winding on the same type of spring

motor. This shows that our mechanism requires relatively smaller

force and less energy to drive. Please note that although the parts

have subtle geometry variations, the impact on final working time

of the wind-up toys is significant.

8 CONCLUSION

We present computational methods to assist the design and fabrica-

tion of compact and lightweight wind-up toys from user-specified

toy shape and motion. First, we identify eleven elemental mecha-

nisms commonly found in wind-up toys, and model their geometry,

kinematics, and connections with analytical equations. Second, we

automatically construct conceptual designs represented as motion

transfer trees and initialize mechanisms by connecting elemental

mechanisms following the transfer trees. Finally, we iteratively

optimize the geometry and layout of elemental mechanisms in a

coarse-to-fine manner, so that the wind-up mechanism becomes

more compact and its part motions resemble the user-specified mo-

tions. We have successfully designed mechanisms for a wide variety

of wind-up toys, recruited six participants to try our system to de-

sign their own wind-up toys, and fabricated six of the results using

3D printing, demonstrating the functionality of the resulting toys.

Limitations and future work. First, we cannot guarantee a feasible
mechanism for arbitrary user inputs, for example, when the input

toy body is too small or too slim to accommodate the wind-up mech-

anism even after optimization. Second, we do not have an explicit

force model that analyzes whether the torque/force of an existing

wind-up motor is sufficient to drive our designed mechanism (with

known fabrication material), and predicts frictional forces involved

at the contacting joints. Third, our system only supports a single

locomotion type (i.e., wheeling), and we plan to support more loco-

motion types such as walking by synchronizing motions of different

end-effector parts (e.g., legs). Fourth, the motor cams employed in

our mechanisms are round; we plan to optimize the cam profile,

such that we can produce more interesting toy part motions. Fifth,

our current conceptual design method is not scalable, say for a large

number of end effector parts, due to the exponential complexity of

the search space. Lastly, besides wind-up toys, we plan to explore

the use of our methods on micro robots and mechanical toys that

are driven with limited battery power.
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