Supplementary Material

for "Computational Design of Wind-up Toys"

Contents

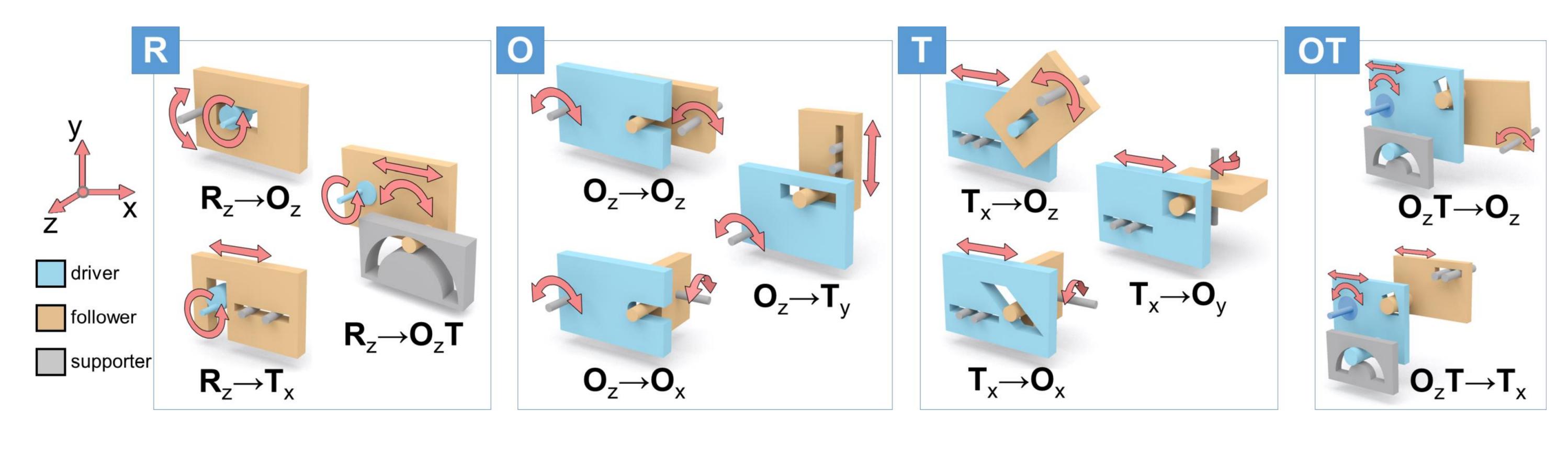
- Part 1: Kinematic Equations of Elemental Mechanisms
- Part 2: Default Geometric Parameters of Elemental Mechanisms
- Part 3: Failure Cases of Kinematics Computation
- Part 4: All Possible Motion Transfer Chains (length ≤ 3)

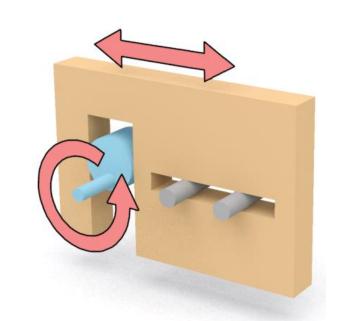
Part 1:

Kinematic Equations of Elemental Mechanisms

Elemental Mechanism Table

Denoting the pose of driver P_d (in blue) and follower P_f (in brown) at time t as $M_d(t)$ and $M_f(t)$, respectively, the goal of modeling an elemental mechanism's kinematics is to be able to compute $M_f(t)$ from $M_d(t)$ for all t. The following slides will formulate kinematic equations for each elemental mechanism.

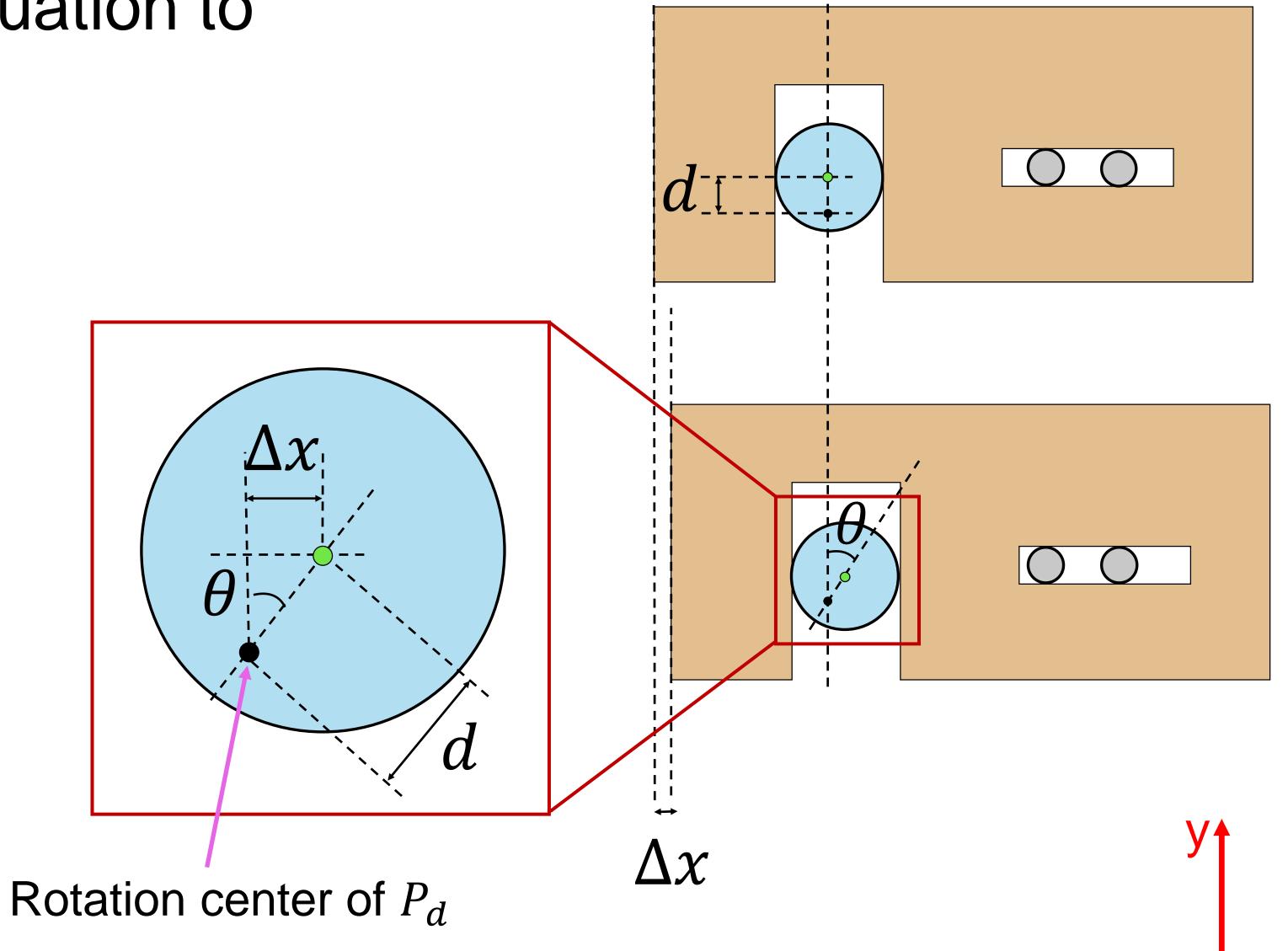


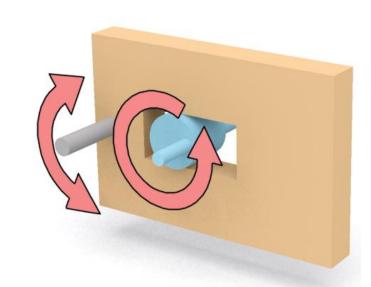


#1 $R_z \rightarrow T_x$

Denote P_d 's rotation angle as θ , and P_f 's translation distance along x-axis as Δx . The equation to compute Δx is:

$$\Delta x = d \sin \theta$$





#2 $R_7 \rightarrow 0_7$

Denote P_d 's rotation angle as θ , and P_f 's rotation angle as α . The equation to compute α is:

$$\alpha = 90^{\circ} - (\alpha_1 + \alpha_2)$$

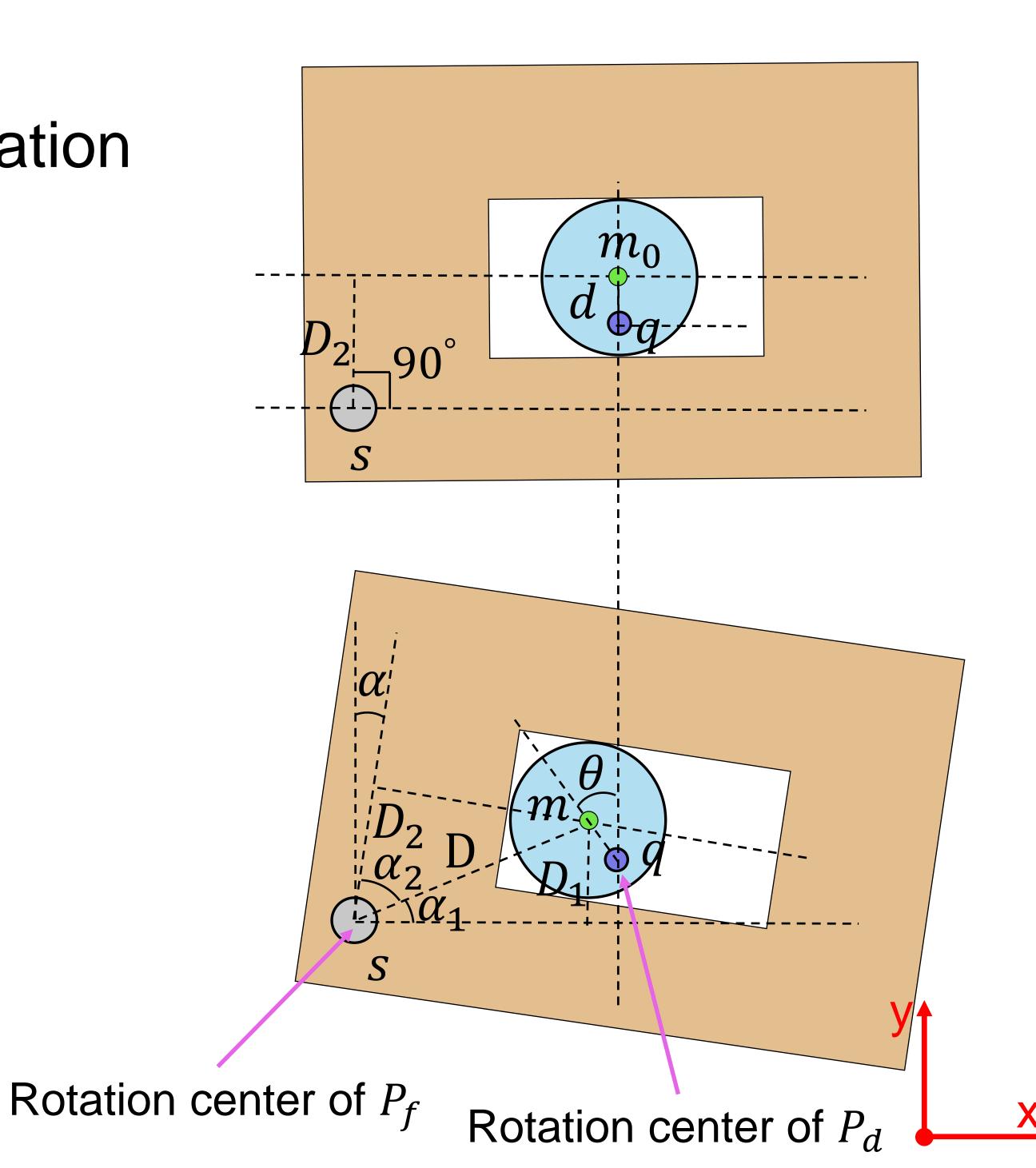
$$\alpha_1 = \cos^{-1} \frac{D_1}{D}$$
 $\alpha_2 = \cos^{-1} \frac{D_2}{D}$

$$\alpha_2 = \cos^{-1} \frac{D_2}{D}$$

$$D = ||m - s||$$

$$D_1 = \left| m_y - s_y \right|$$

$$D_2 = \left| m_{0y} - s_y \right|$$



 m_0 is the geometric center of the round cam P_d in the initial configuration (top figure), which is aligned vertically with the fixed cam rotation center (q). Hence, we have

$$m_{0_{\mathcal{X}}} = q_{\mathcal{X}}$$

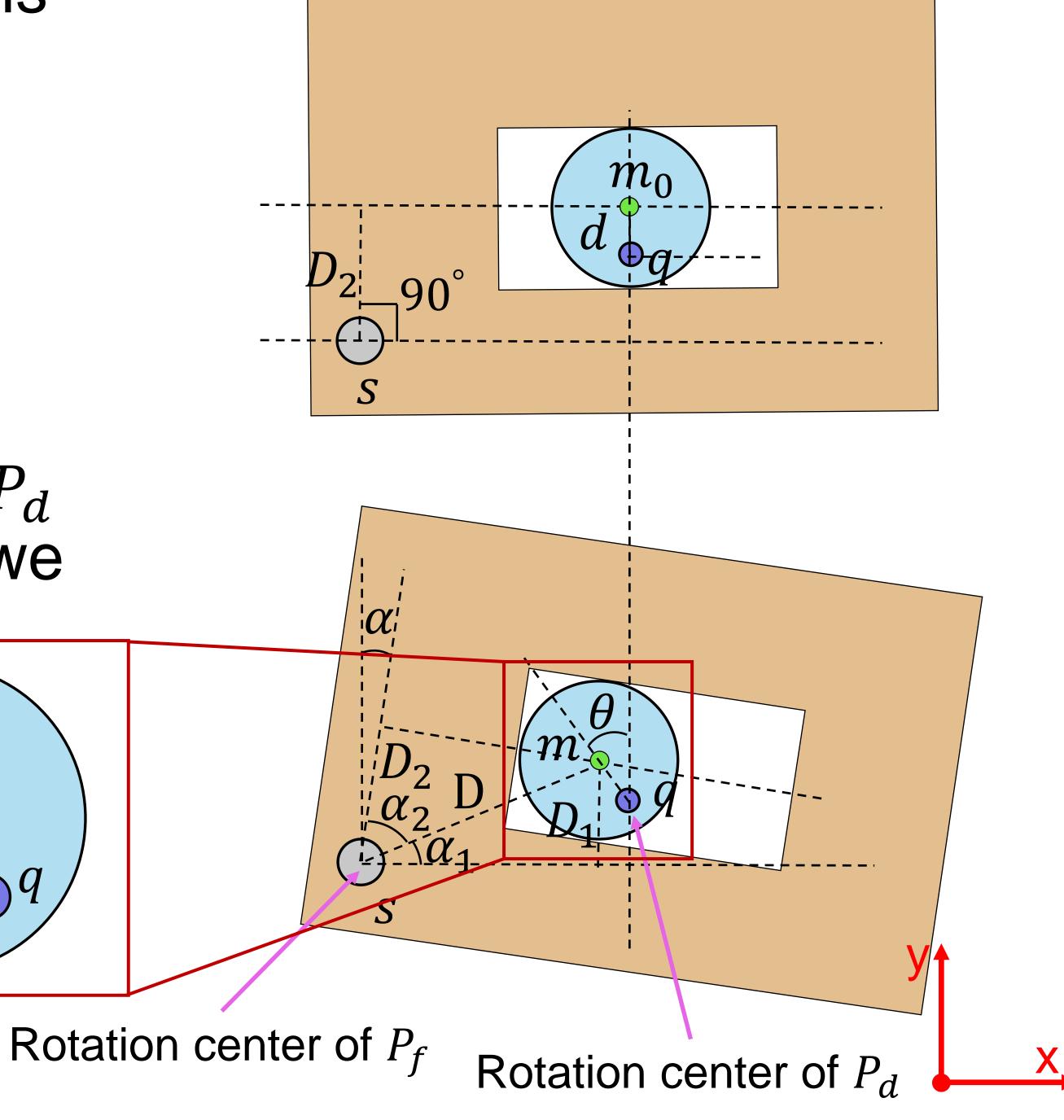
$$m_{0_{\mathcal{Y}}} = q_{\mathcal{Y}} + d$$

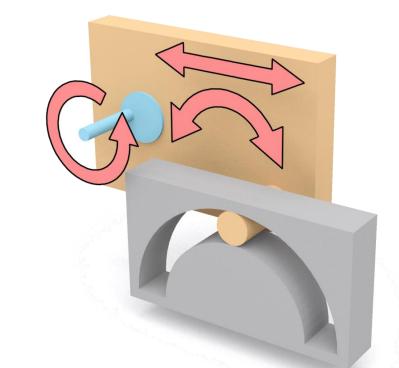
m is the geometric center of the round cam P_d after it rotates for θ (bottom figure). Hence, we have

m

$$m_x = q_x - d \sin \theta$$

$$m_y = q_y + d\cos\theta$$



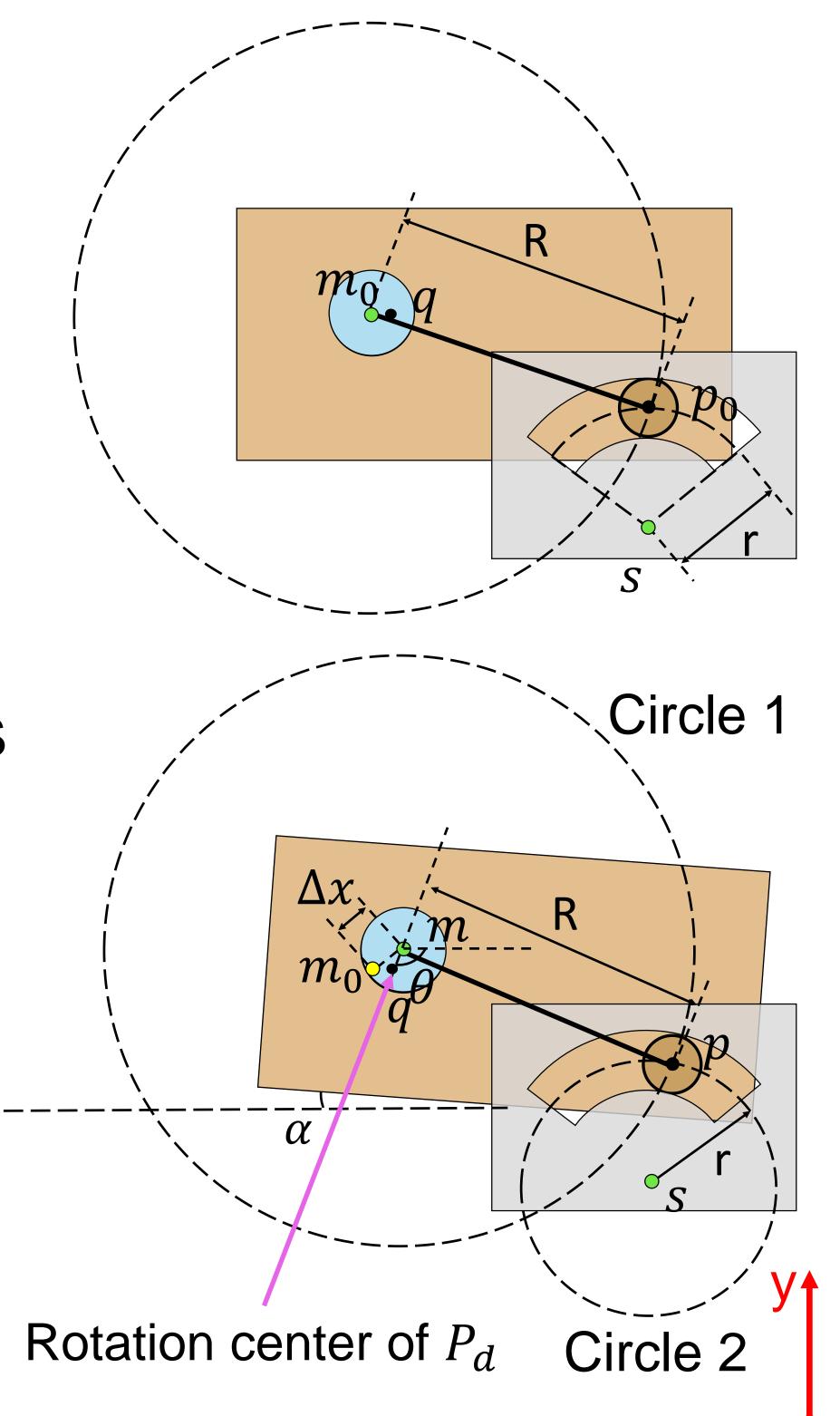


#3 $R_z \rightarrow O_z T$

Denote P_d 's rotation angle as θ .

Denote P_f 's rotation angle as α and translation vector as Δx .

The equation to compute α and Δt is based on computing the driver-follower joint center p, which is at the intersection point(s) between the two circles (see right figures).



The 2 circles that p locates are

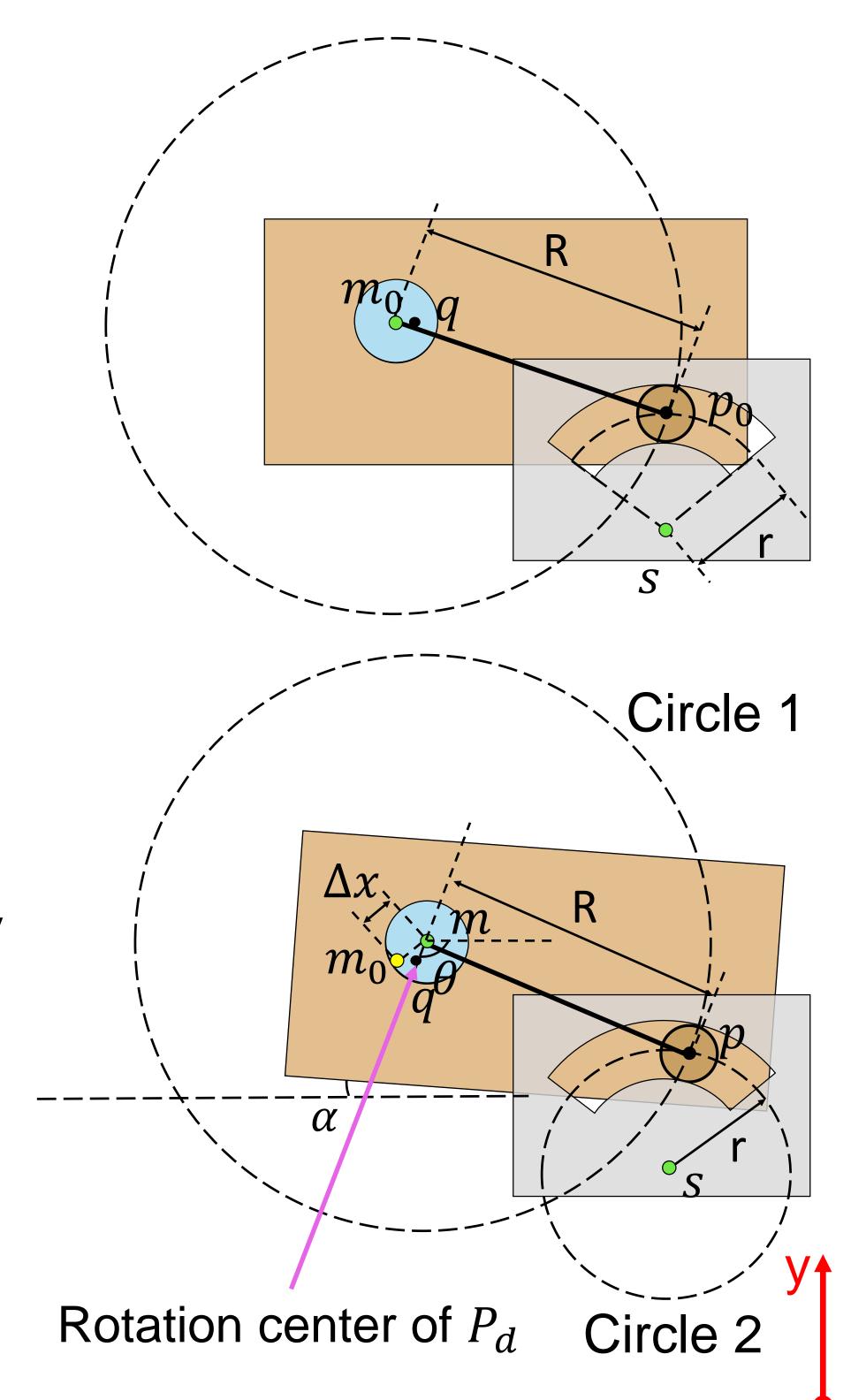
Circle 1: center m; radius $R = \|p_0 - m_0\|$

Circle 2: center s; radius $r = ||p_0 - s||$

Hence, p must satisfy the following two equations

$$\begin{cases} (p_x - m_x)^2 + (p_y - m_y)^2 = R^2 \\ (p_x - s_x)^2 + (p_y - s_y)^2 = r^2 \end{cases}$$

Note that m_0 and m are computed in the same way as in #2 $R_z \rightarrow O_z$

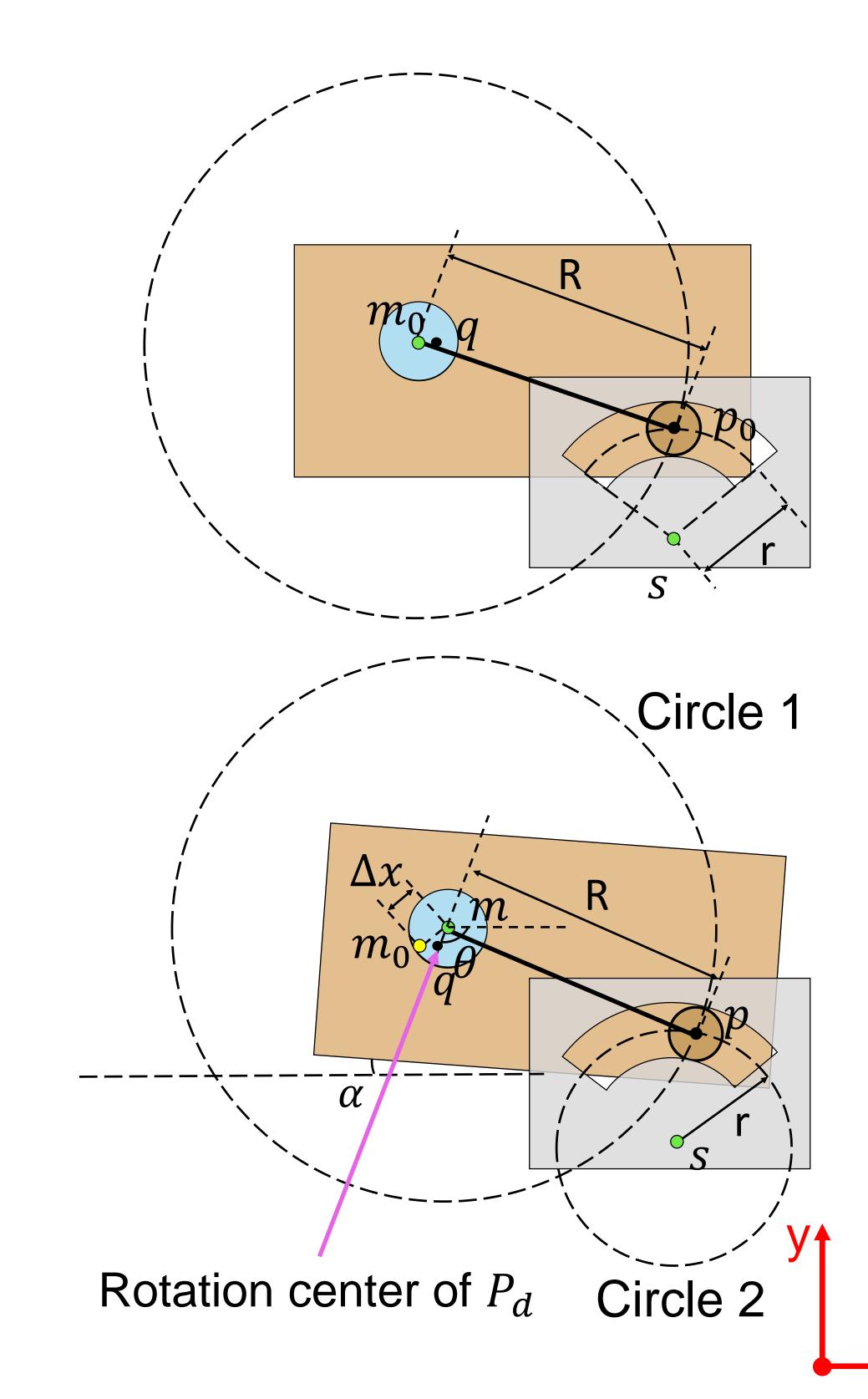


By solving the above two equations, we have

$$p_{y} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a} + s_{y}$$

$$p_{x} = \frac{r^{2} - R^{2} + m_{x}'^{2} + m_{y}'^{2} - 2m_{y}'(p_{y} - s_{y})}{2m_{x}'} + s_{x}$$

$$m_{x}' = m_{x} - s_{x}$$
 $m_{y}' = m_{y} - s_{y}$
 $a = 4(m_{x}'^{2} + m_{y}'^{2})$
 $b = -4m_{y}'(r^{2} - R^{2} + m_{x}'^{2} + m_{y}'^{2})$
 $c = (r^{2} - R^{2} + m_{x}'^{2} + m_{y}'^{2})^{2} - (2m_{x}'R)^{2}$



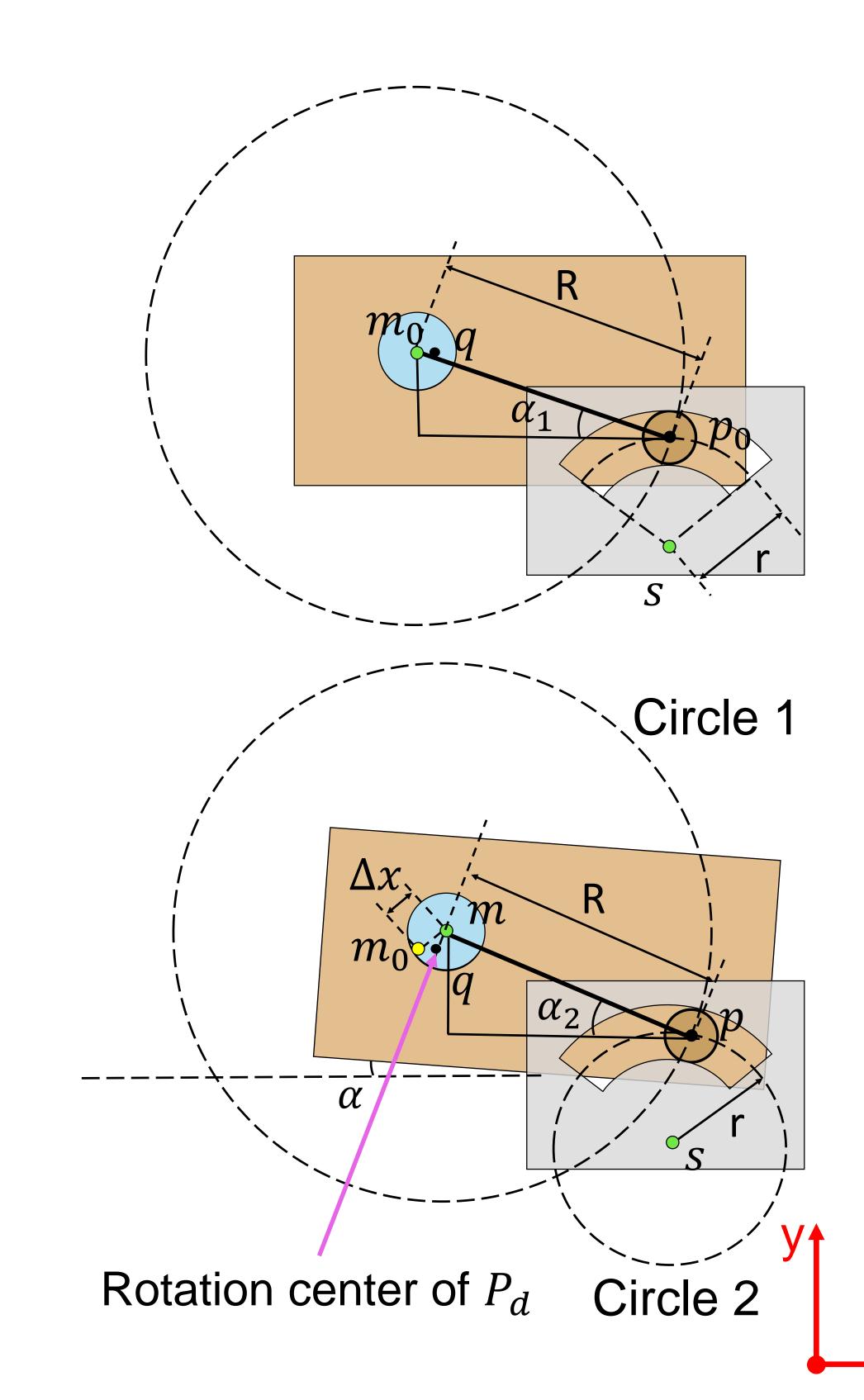
Based on the calculated p, we have

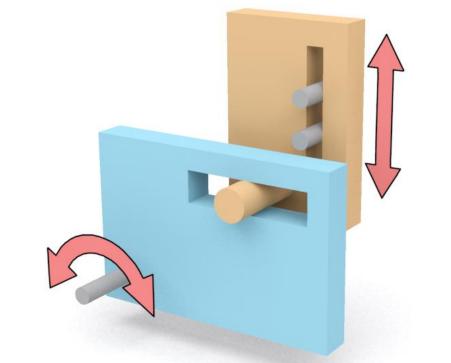
$$\Delta x = p - p_0$$

$$\alpha = \alpha_2 - \alpha_1$$

$$\alpha_1 = \tan^{-1} \left(\frac{p_{0y} - m_{0y}}{p_{0x} - m_{0x}} \right)$$

$$\alpha_2 = \tan^{-1} \left(\frac{p_y - m_y}{p_x - m_x} \right)$$



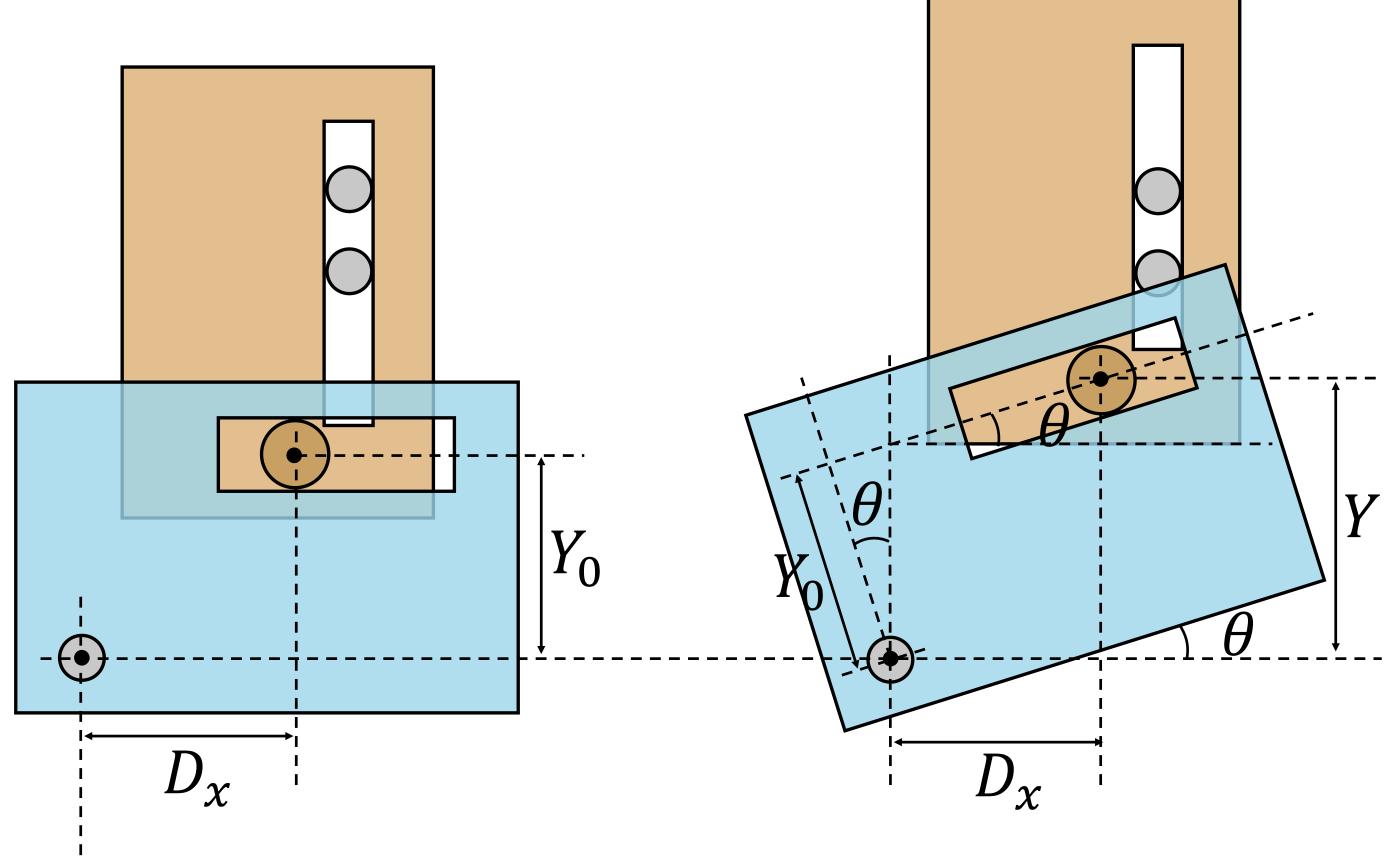


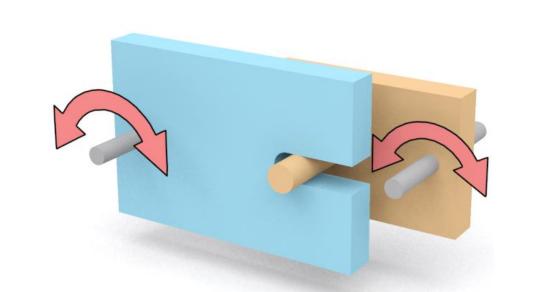
#4 $O_z \rightarrow T_y$

Denote P_d 's rotation angle as θ , and P_f 's translation distance along y-axis as Δy . The equation to compute Δy is:

$$\Delta y = Y - Y_0$$

$$Y = \frac{Y_0}{\cos \theta} + D_x \tan \theta$$



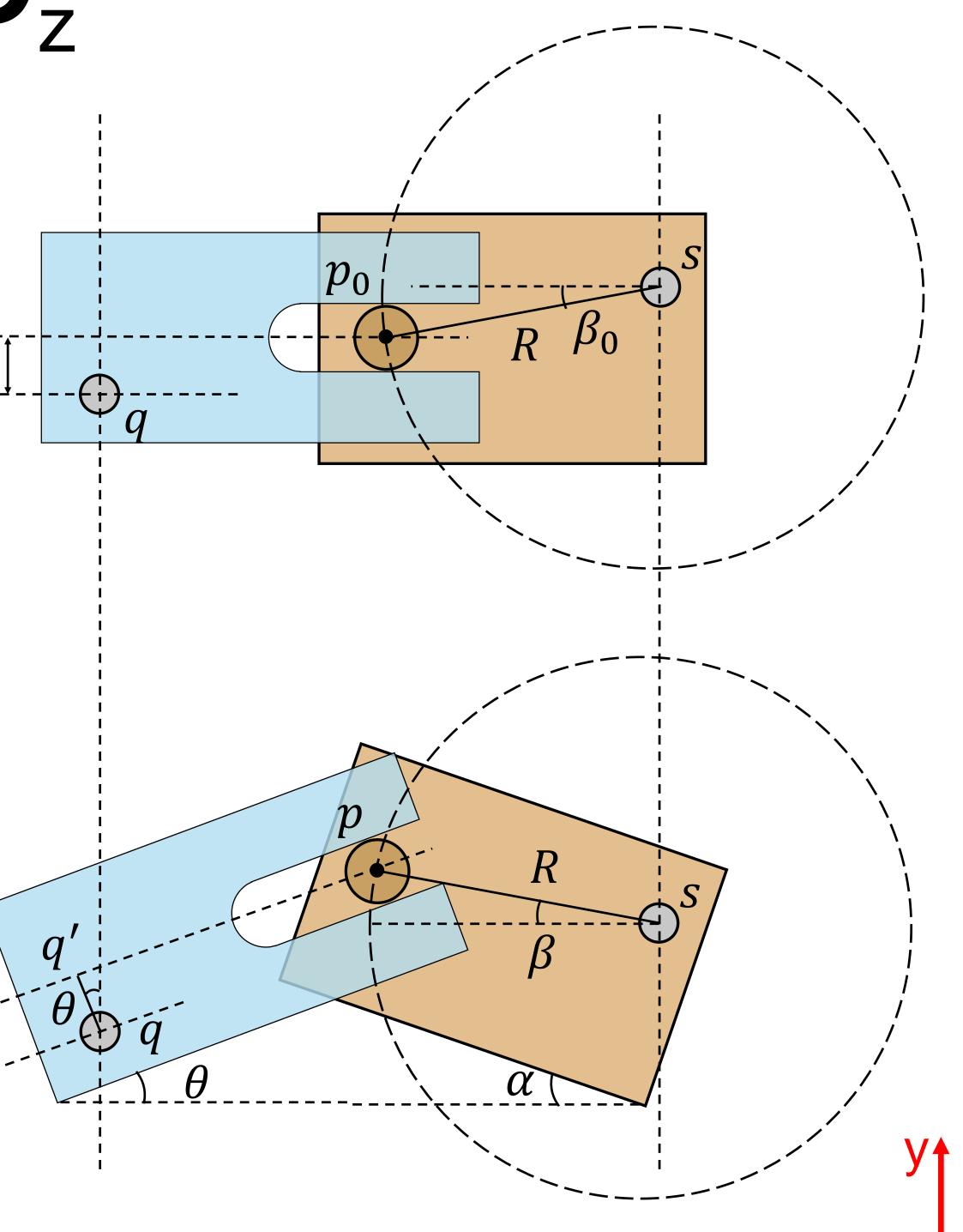


#5 $O_Z \rightarrow O_Z$

Denote P_d 's rotation angle as θ , and P_f 's rotation angle as α . The equation to compute α is based on computing the driver-follower joint center p, which can be computed using the following two equations:

$$\begin{cases} (p_x - s_x)^2 + (p_y - s_y)^2 = R^2 \\ \frac{p_y - q_y'}{p_x - q_x'} = \tan\theta \end{cases}$$

$$q'_{x} = q_{x} - d \sin \theta$$
$$q'_{y} = q_{y} + d \cos \theta$$



By solving the above two equations, we get

$$p_x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

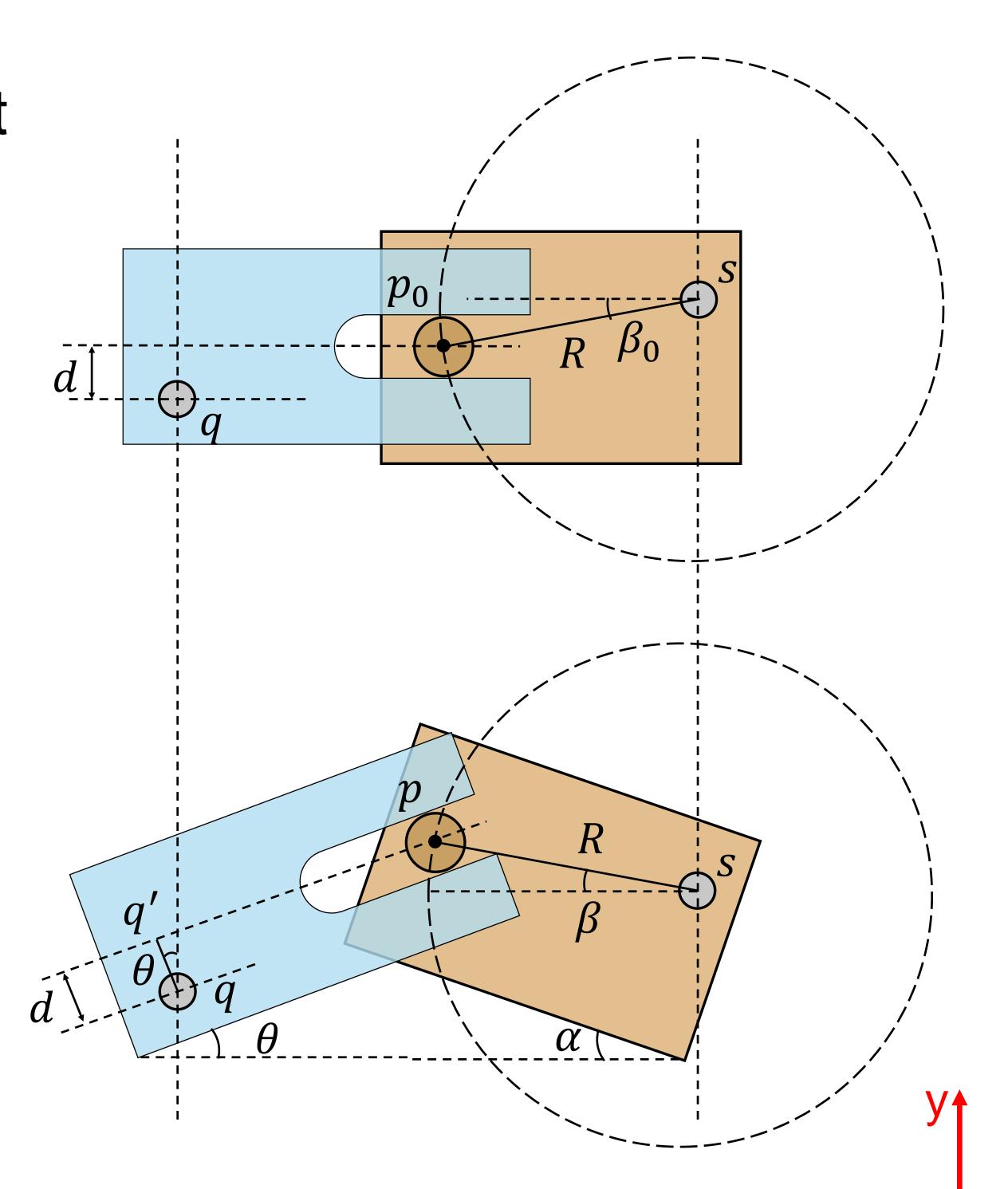
$$p_y = \tan(p_x - q_x') + q_y'$$

$$a = 1 + (\tan \theta)^{2}$$

$$b = -2 s_{x} - 2(-q'_{x} \tan \theta + q'_{y}) - 2 s_{y} \tan \theta$$

$$c = s_{x}^{2} + (-q'_{x} \tan \theta + q'_{y})^{2}$$

$$- 2 s_{y}(-q'_{x} \tan \theta + q'_{y}) + s_{y}^{2}$$

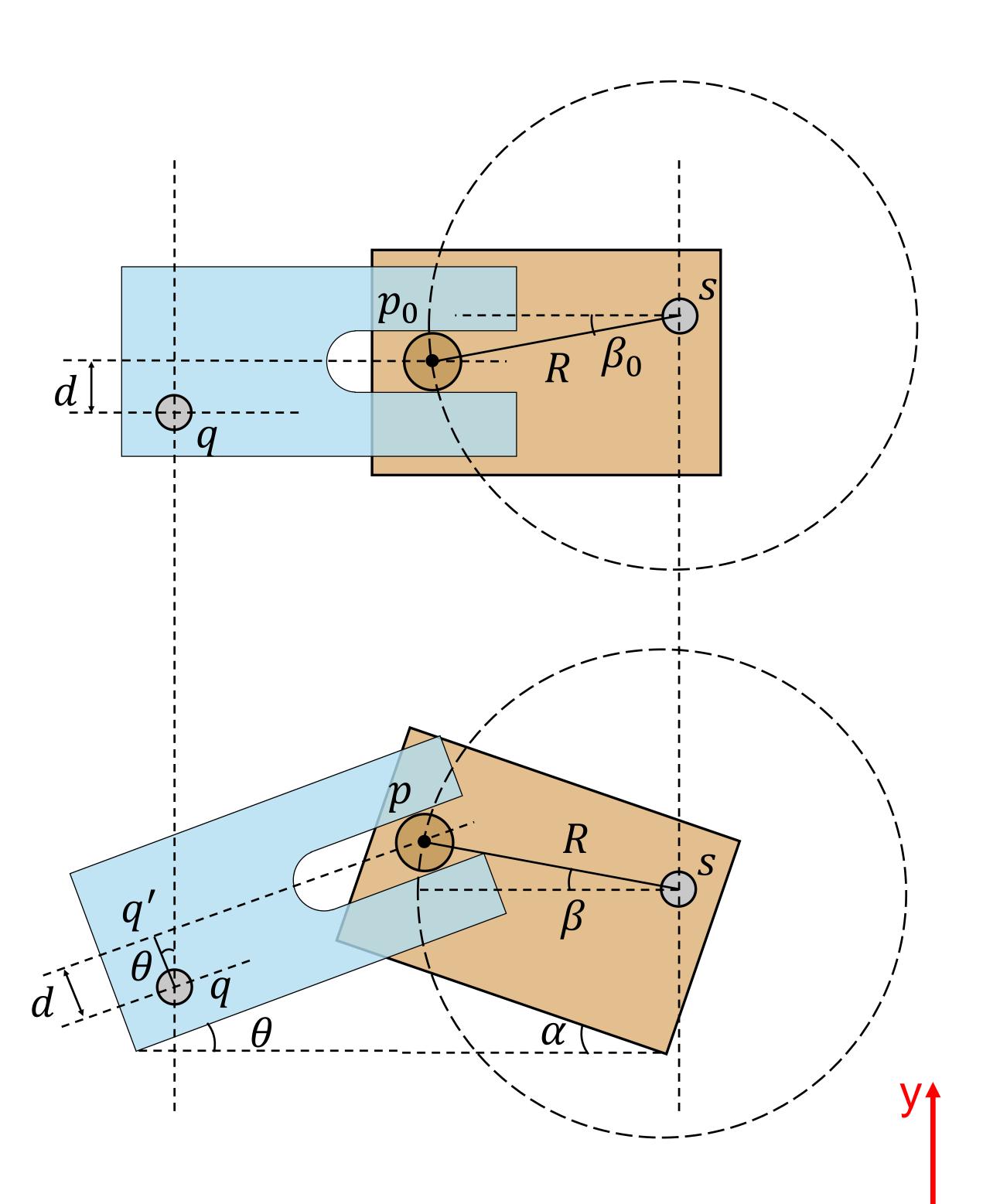


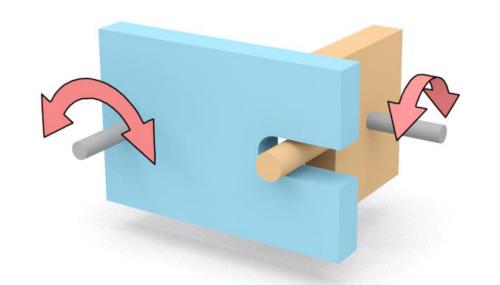
Based on the calculated p, we have

$$\alpha = \beta_0 + \beta$$

$$\beta_0 = \tan^{-1} \frac{s_y - p_{0_y}}{s_x - p_{0_x}}$$

$$\beta = \tan^{-1} \frac{p_y - s_y}{s_x - p_x}$$



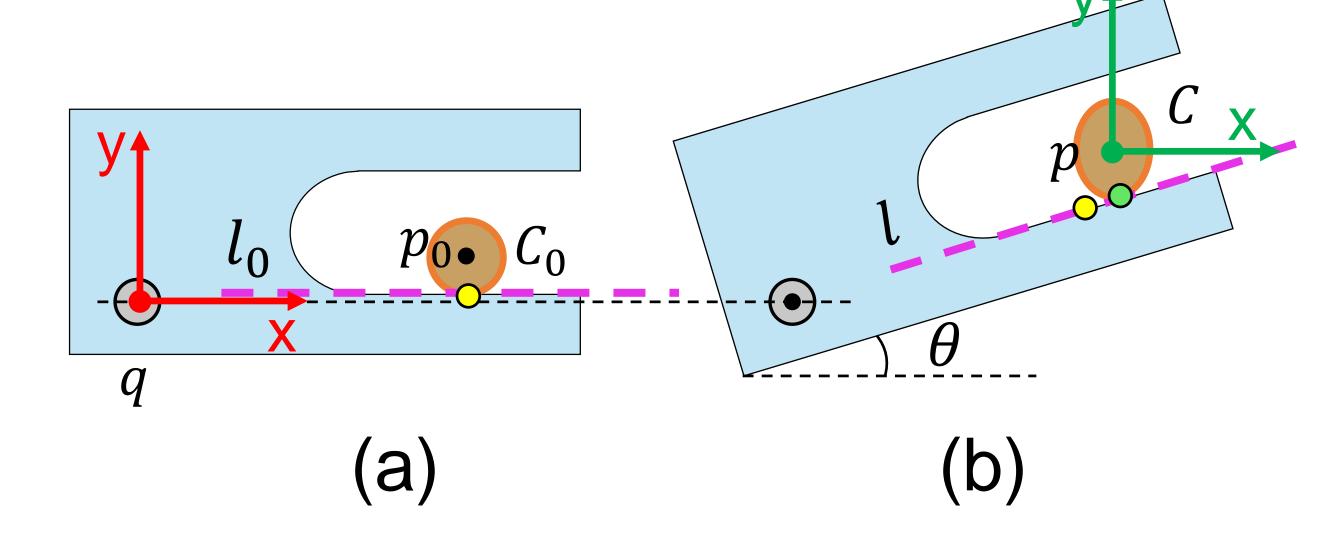


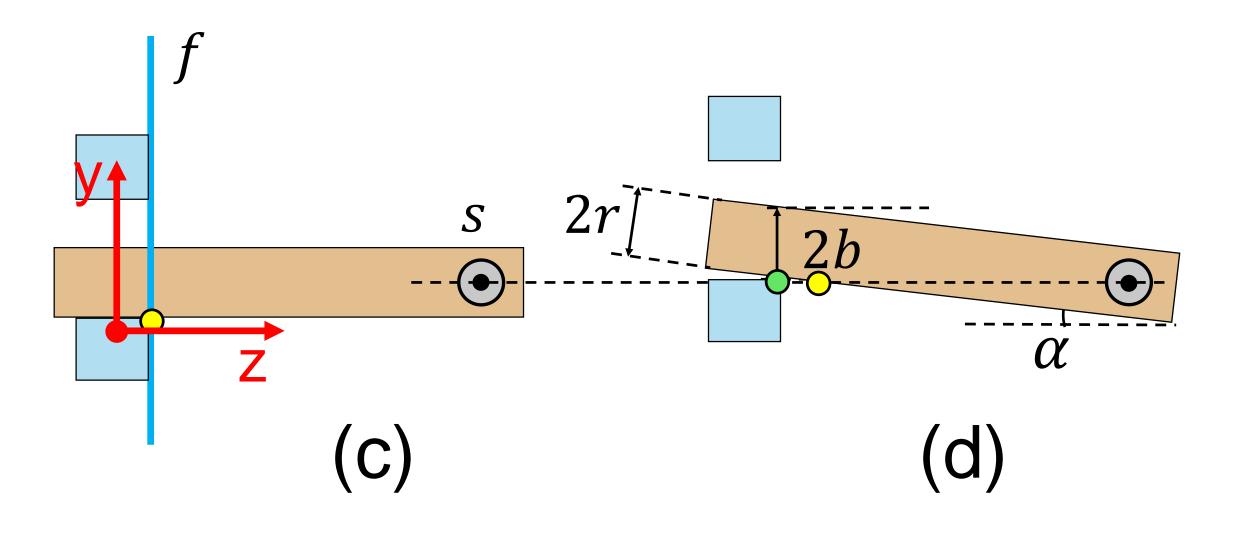
#6 $O_z \rightarrow O_x$

Denote P_d 's rotation angle as θ , and P_f 's rotation angle as α .

The equation to compute α is based on the contact between a line l (in purple) in driver's major plane f, and the projection of driverfollower joint on f, which is actually an oval, denoted as C (in orange), see (a&b).

Line *l* and oval *C* should always contact each other during the parts motion. The initial contact point is colored in yellow while the current contact point is colored in green.





Denote the center of C as p, we build two coordinate systems:

1) red one centered at q in (a); and 2) green one centered at p in (b). The following calculations will be done in these two coordinate systems.

Denote line *l*'s equation in the red coordinate system as:

$$y = kx + c \tag{1}$$

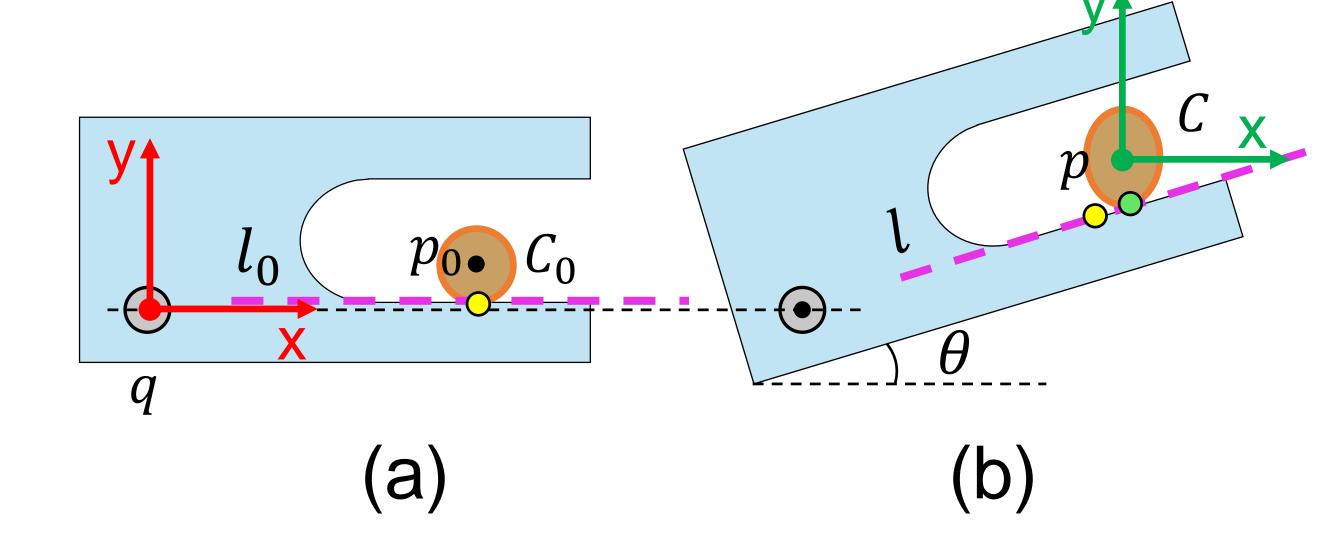
where

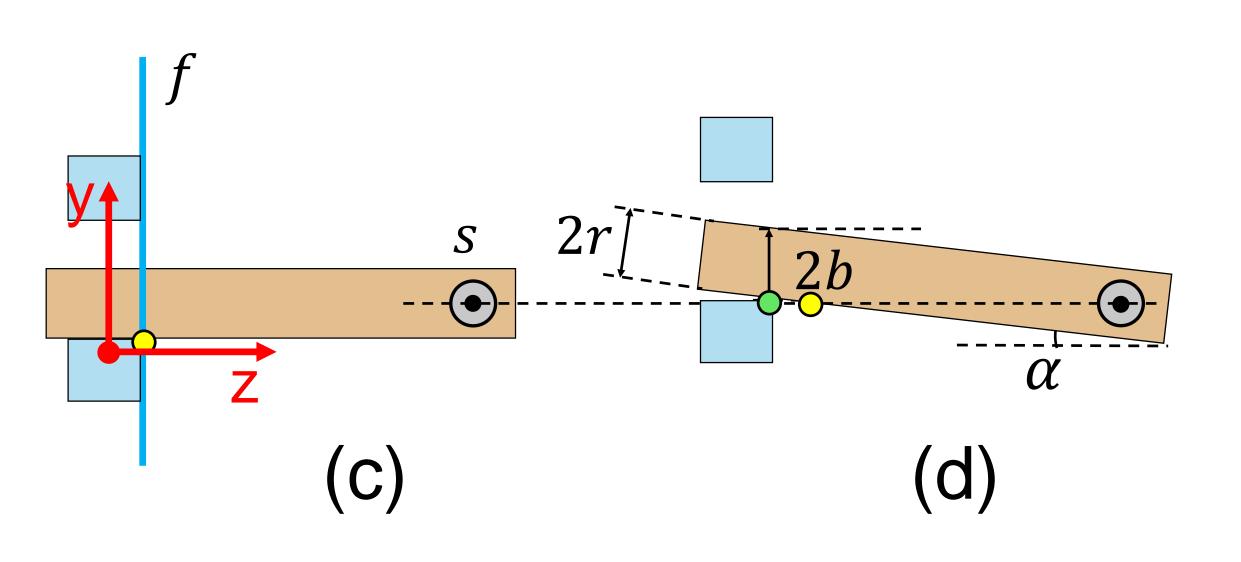
$$k = \tan \theta \qquad c = \frac{p_{0y} - q_y - r}{\cos \theta}$$

Denote oval *C*'s equation in the green coordinate system as:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$a = r$$
 $b = \frac{r}{\cos \alpha}$





Denote line *l*'s equation in the green coordinate system as: y = kx + c'Consider the two equations together:

$$\begin{cases} y = kx + c' \\ x^2 \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \end{cases}$$

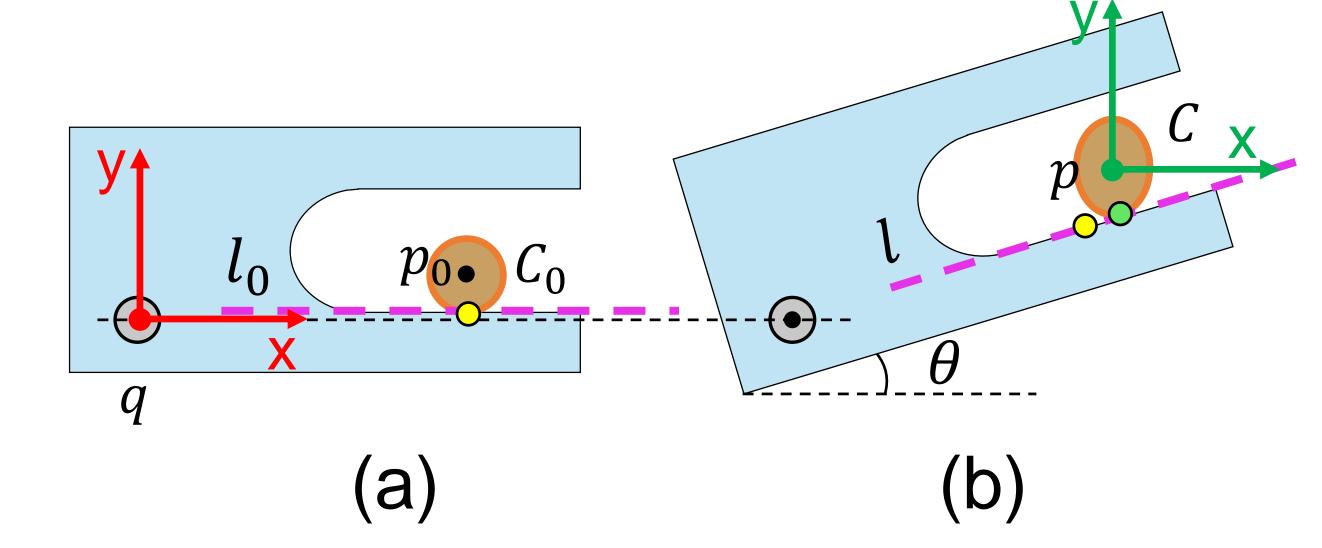
Since *l* and *C* are always tangent to each other, the equation set above can have a unique solution. Hence, we have equation (2)

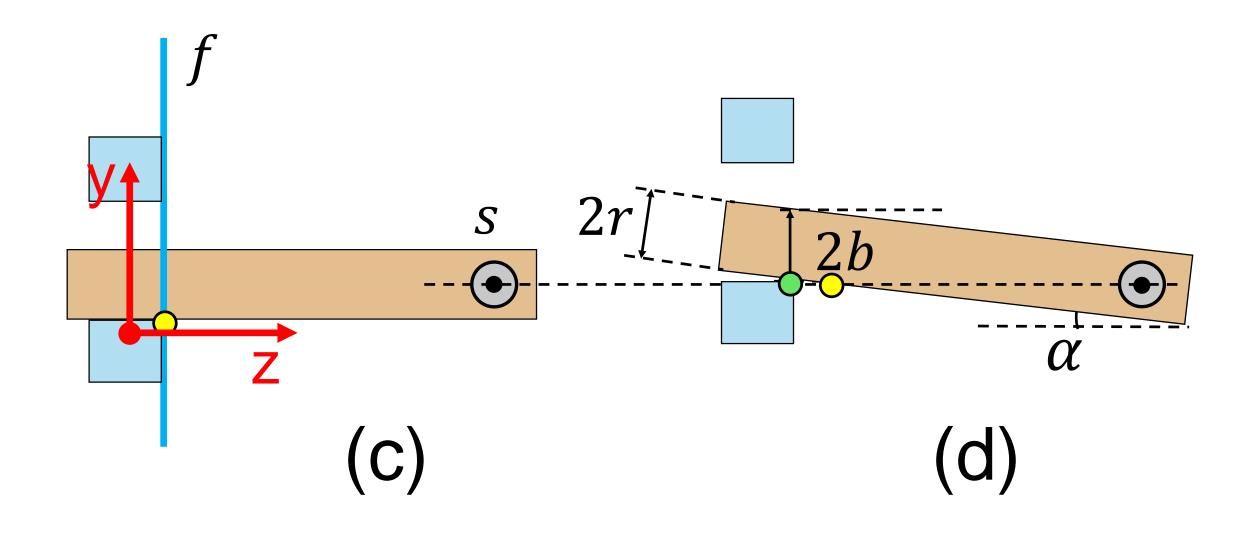
$$a^2k^2 - c'^2 + b^2 = 0 (2)$$

In addition, absolute coordinate of p is

$$p_x = p_{0_x}$$

 $p_y = p_{0_y} + (p_{0_z} - q_z) \tan \alpha$ (3)





Denote
$$L = a^2 k^2$$

Denote
$$L = a^2 k^2$$
 $M = k(p_{0_x} - q_x) + c + q_y - p_{0_y}$ $N = p_{0_z} - q_z$

So, from (1) and (3), we have $c' = M - N \tan \alpha$

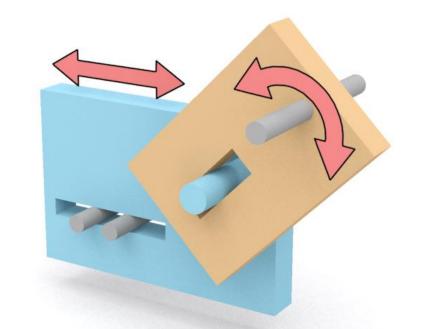
Substituting into (2), we have: $L - (M - N \tan \alpha)^2 + \frac{r^2}{\cos \alpha^2} = 0$

Denote
$$\theta' = -\tan^{-1} \frac{M^2 - L - N^2}{2MN}$$

We have:
$$r^2 - \frac{M^2 - L - N^2}{2} = \sin(2\alpha + \theta') \sqrt{(\frac{M^2 - L - N^2}{2})^2 + (MN)^2}$$

Hence,

$$sin^{-1} \left(\frac{r^2 - \frac{M^2 - L - N^2}{2}}{\sqrt{\left(\frac{M^2 - L - N^2}{2}\right)^2 + (MN)^2}} \right) - \theta$$



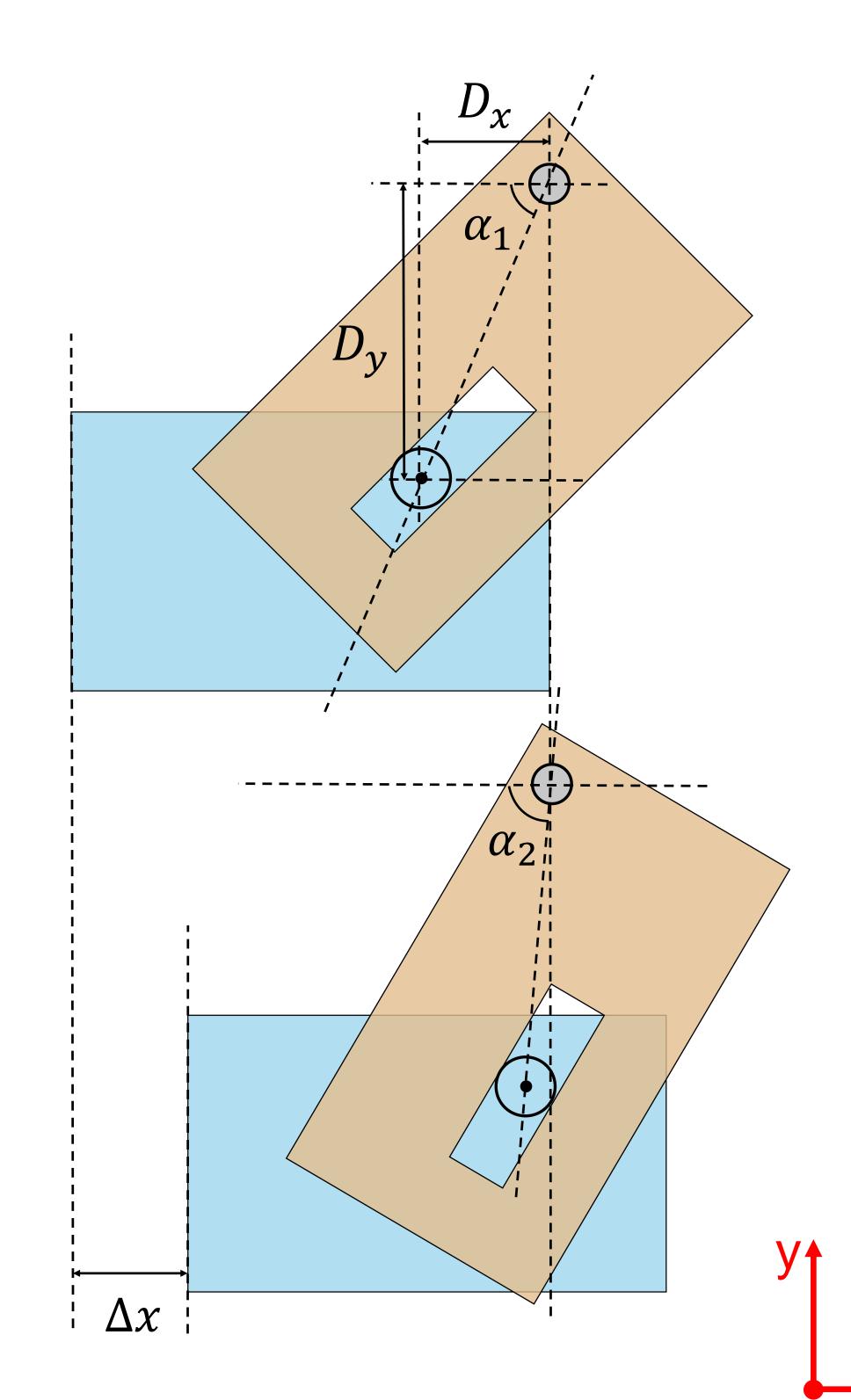
#7 $T_X \rightarrow O_Z$

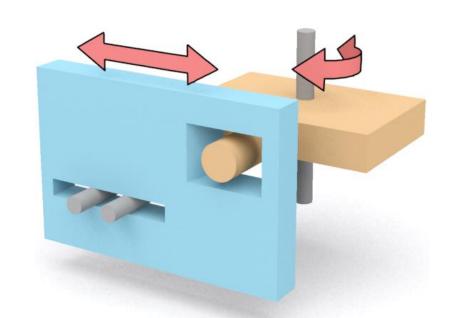
Denote P_d 's translation distance along x-axis as Δx , and P_f 's rotation angle as α . The equation to compute α is:

$$\alpha = \alpha_2 - \alpha_1$$

$$\alpha_1 = \tan^{-1} \frac{D_y}{D_x}$$

$$\alpha_2 = \tan^{-1} \frac{D_y}{D_x - \Delta x}$$





#8 $T_X \rightarrow O_y$

Denote Δx as P_d 's translation distance along x-axis. We need to compute P_f 's oscillating angle α around y-axis centered at point B.

Here we assume P_d and P_f always contact at point A, e.g., due to gravity of P_f or external forces on P_f

Denote:

$$D_x = |BC|$$
 $D_z = |BD|$
 $\gamma = \angle BAC$ $\beta = \angle ABD$
 $A = (A_x, A_y)$ $B = (B_x, B_y)$



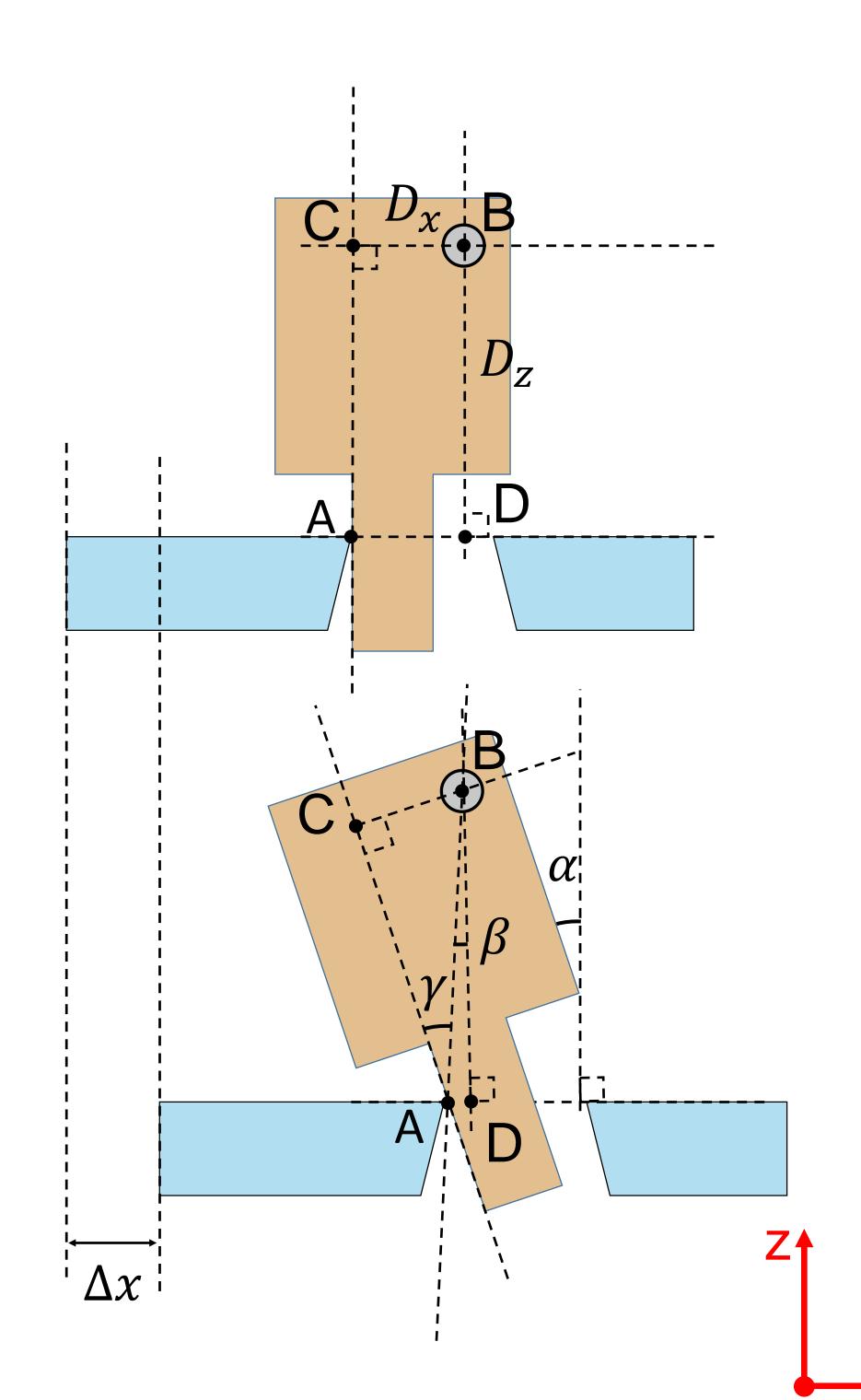
From the right figure, we can see

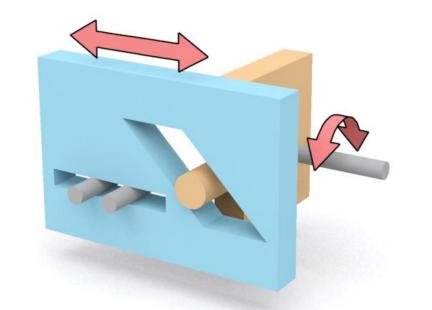
$$\alpha = \gamma - \beta$$

$$\gamma = \sin^{-1} \frac{D_{\chi}}{|BA|}$$

$$\beta = \cos^{-1} \frac{D_Z}{|BA|}$$

$$|BA| = \sqrt[2]{(B_x - A_x - \Delta x)^2 + (B_y - A_y)^2}$$



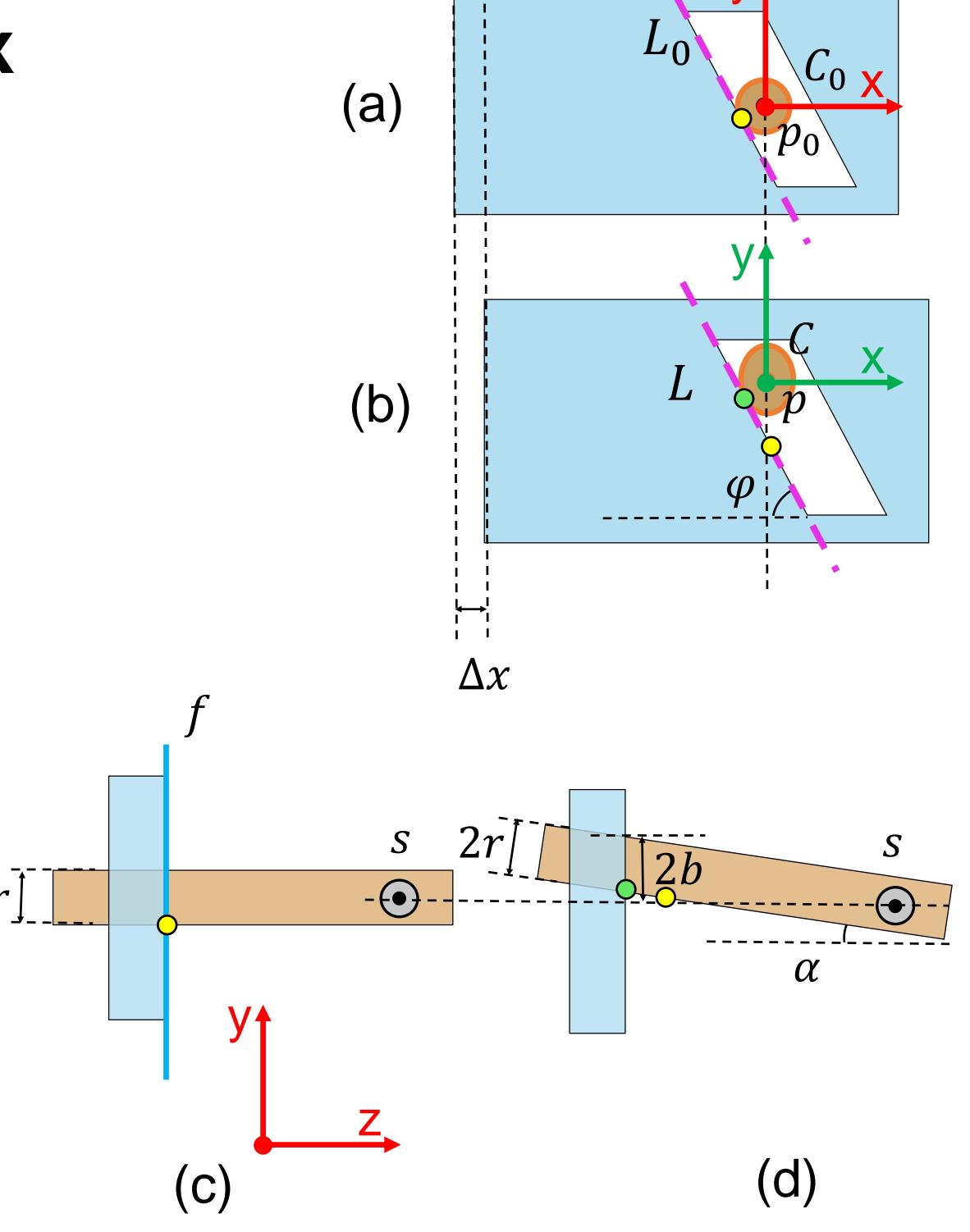


#9 $T_X \rightarrow O_X$

Denote P_d 's translation distance along x-axis as Δx , and P_f 's rotation angle as α .

The equation to compute α is based on the contact between a line L (in purple) in driver's major plane f, and the projection of driverfollower joint on f, which is actually an oval, denoted as C (in orange), see (a&b).

Line *L* and oval *C* should always contact each other during the parts motion. The initial contact point is colored in yellow while the current contact point is colored in green.



Denote the center of C as p, we build two coordinate systems: 1) red one centered at p_0 in (a); and 2) green one centered at p in (b). The following calculations will be (a) done in these two coordinate systems.

Denote line L's equation in the red coordinate system as:

$$y = kx + c$$

where

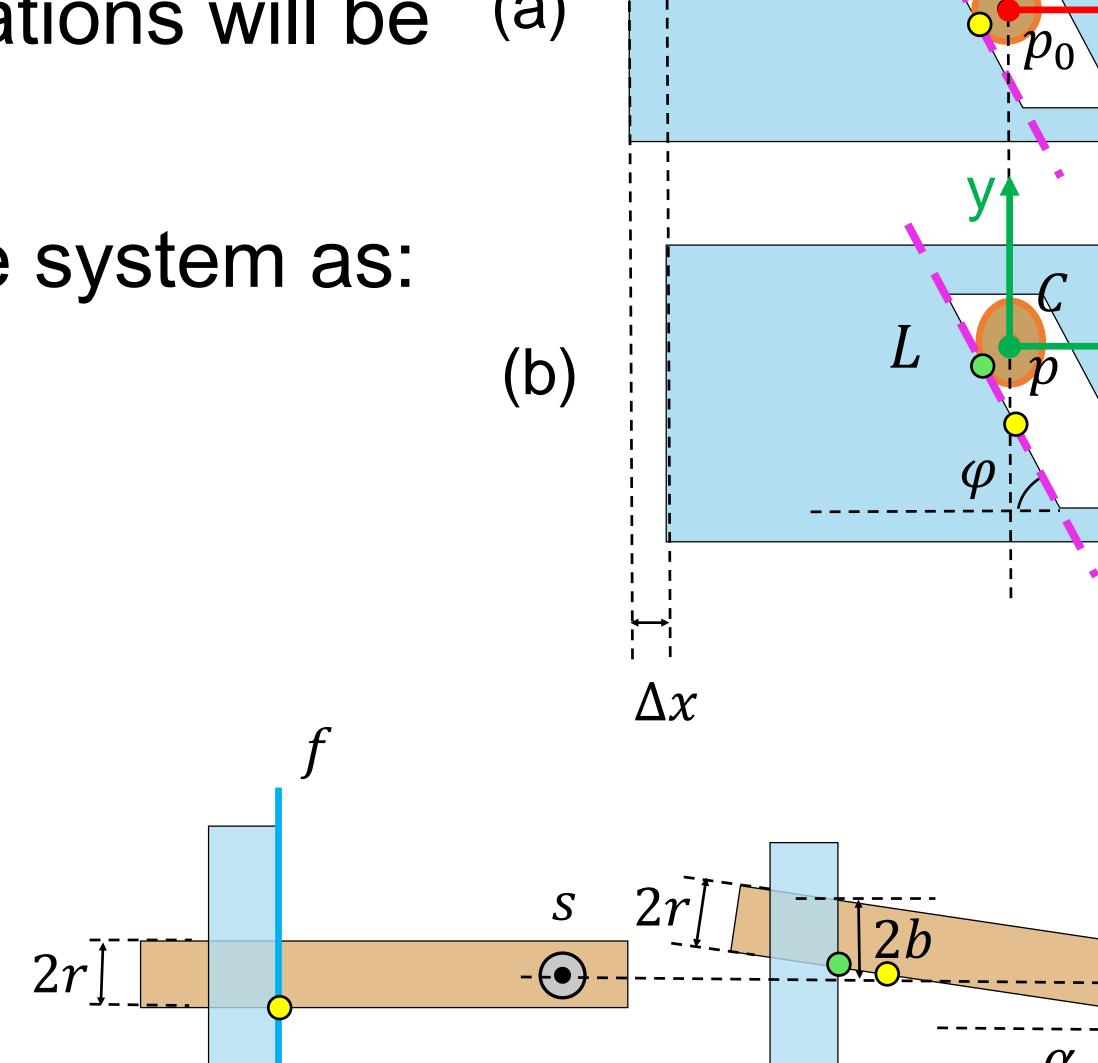
$$k = -tan\varphi \quad c = -\frac{r}{\cos \varphi} + \Delta x \tan \varphi$$

Denote oval *C*'s equation in the green coordinate system as:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where

$$a = r$$
 $b = \frac{r}{\cos \alpha}$



(d)

Denote line L's equation in the green coordinate system as:

$$y = kx + c'$$

Consider the two equations together:

$$\begin{cases} y = kx + c' \\ x^2 + \frac{y^2}{b^2} = 1 \end{cases}$$

Since *L* and *C* are always tangent to each other, the equation set above can have a unique solution. Hence, we have equation (2)

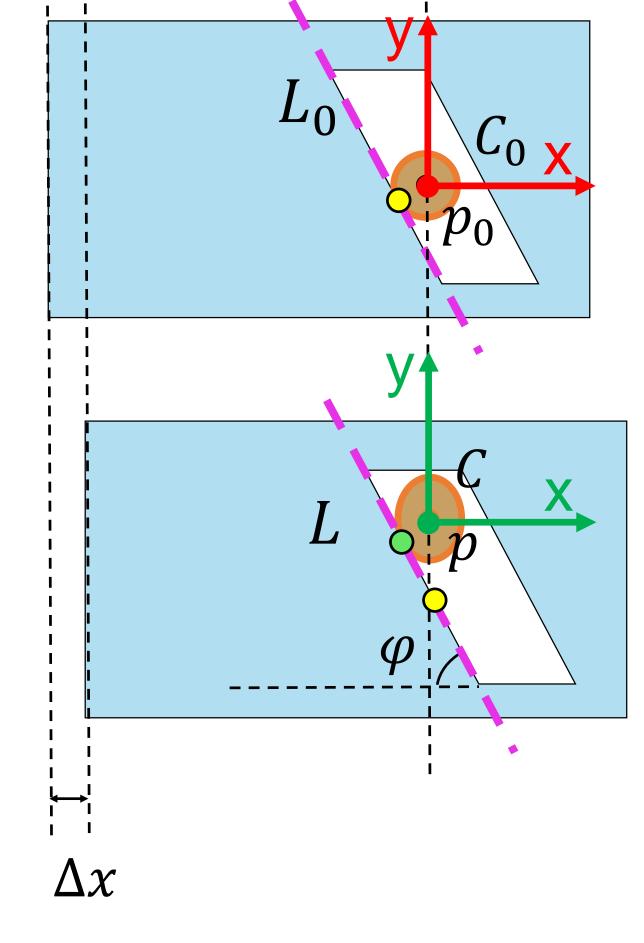
$$a^2k^2 - c'^2 + b^2 = 0 (2)$$

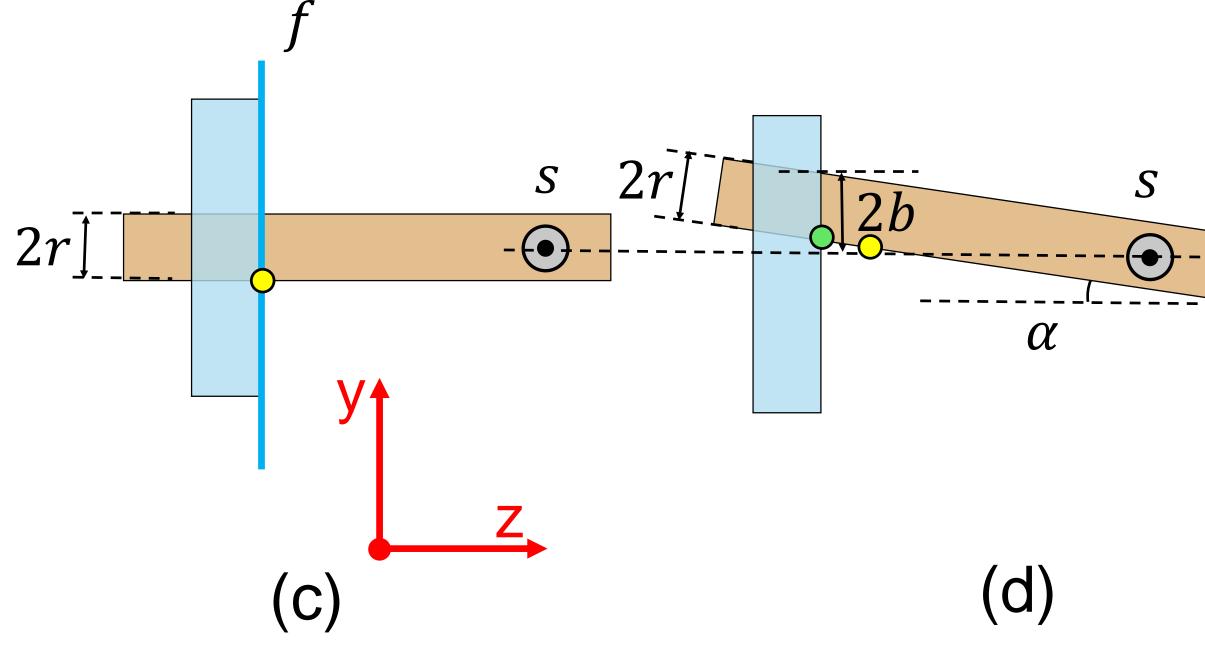
In addition, the position of p is

$$p_x = p_{0_x}$$

$$p_y = p_{0_y} + (p_{0_z} - s_z) \tan \alpha$$

$$p_z = p_{0_z}$$
(3)





(a)

(b)

Denote
$$L = a^2 k^2$$

Denote
$$L = a^2 k^2$$
 $M = k(p_{0_x} - s_x) + c + s_y - p_{0_y}$ $N = p_{0_z} - s_z$

So, from (1) and (3), we have

 $c' = M - N \tan \alpha$

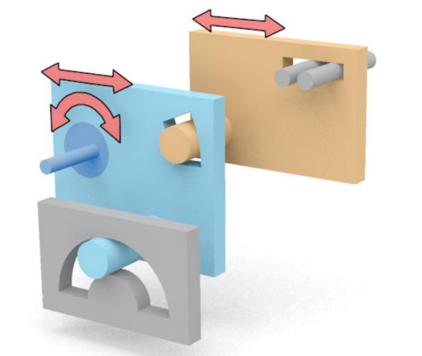
Substituting into (2), we have:
$$L - (M - N \tan \alpha)^2 + \frac{r^2}{\cos \alpha^2} = 0$$

Denote
$$\theta' = -\tan^{-1} \frac{M^2 - L - N^2}{2MN}$$

We have:
$$r^2 - \frac{M^2 - L - N^2}{2} = \sin(2\alpha + \theta') \sqrt{(\frac{M^2 - L - N^2}{2})^2 + (MN)^2}$$

Hence,

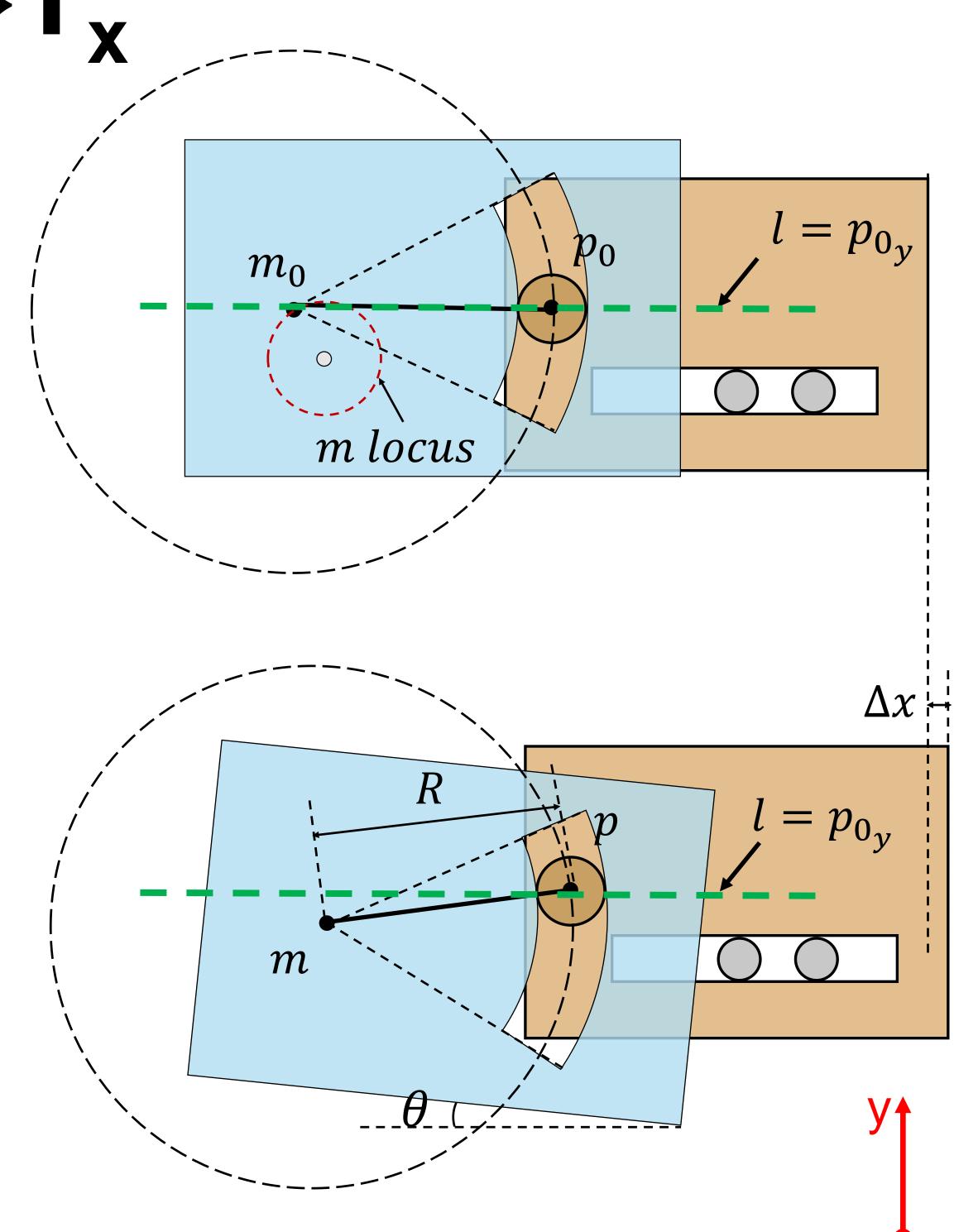
$$sin^{-1} \left(\frac{r^2 - \frac{M^2 - L - N^2}{2}}{\sqrt{\left(\frac{M^2 - L - N^2}{2}\right)^2 + (MN)^2}} \right) - \theta$$



 $\#10 O_z T \rightarrow T_x$

Denote P_d 's rotation angle as θ , translation distance along x-axis as Δm_x , and translation distance along y-axis as Δm_y . Denote P_f 's translation distance along x-axis as Δx .

The equation to compute Δx is based on computing the driver-follower joint center p, which is at the intersection between the green line (that is passing through p and aligned with x-axis) and the circle shown on the right figures.



The line's equation is: $y = p_{0_v}$

The circle is centered at m and has a radius

$$R = \|p_0 - m_0\|$$

Putting the two equations together, we have

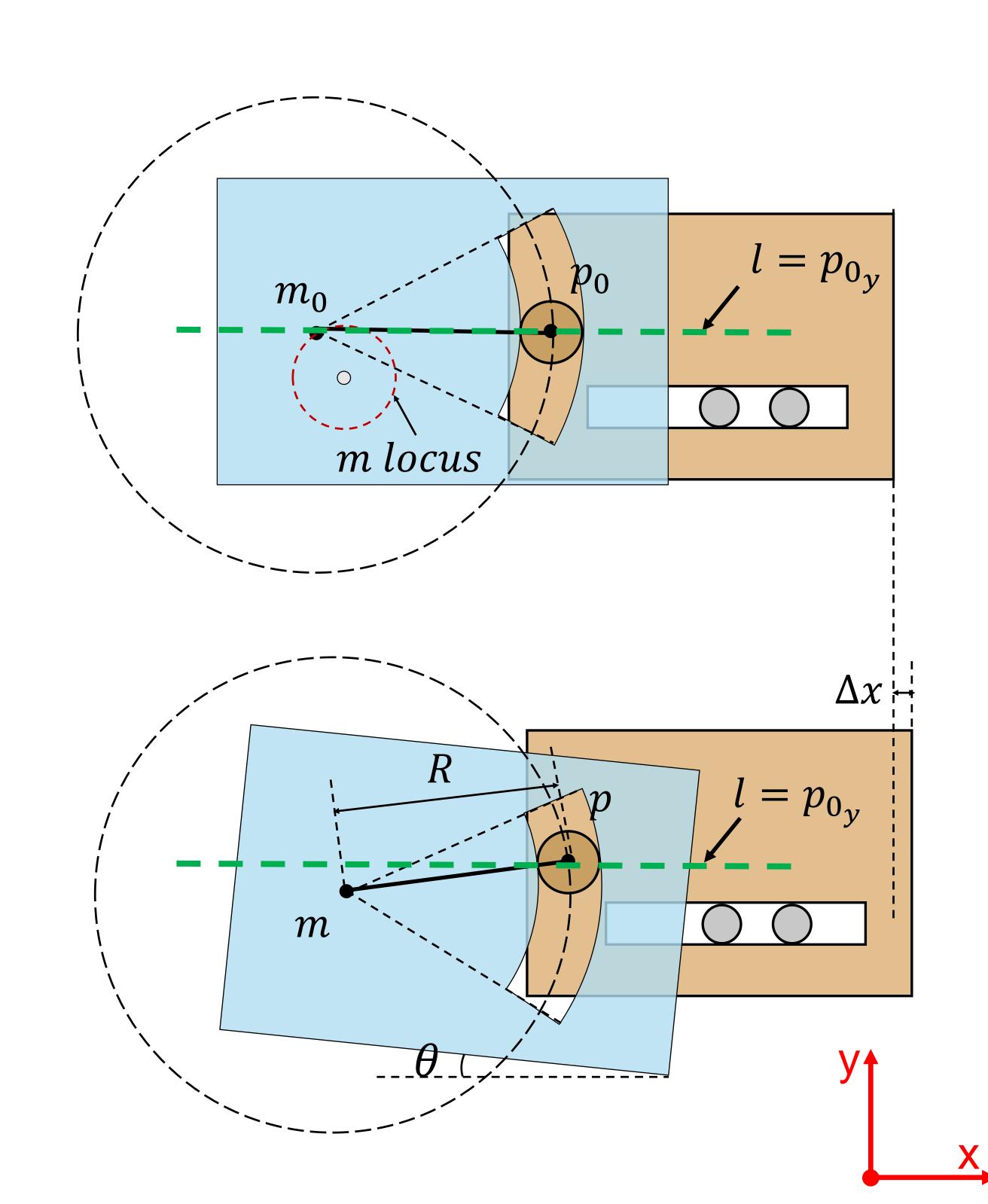
$$\begin{cases} p_y = p_{0y} \\ (p_x - m_x)^2 + (p_y - m_y)^2 = R^2 \end{cases}$$

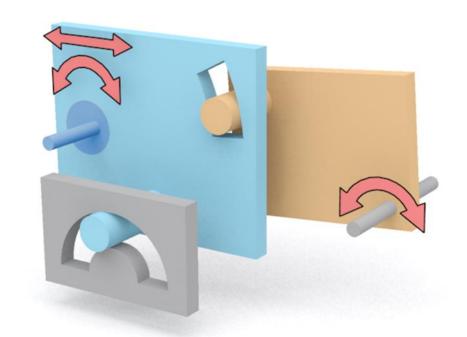
By solving above two equations, we get

$$\Delta x = p_x - p_{0_x}$$

$$p_{x} = \sqrt{R^{2} - (p_{0_{y}} - m_{y})^{2}}$$

$$m_{y} = m_{0_{y}} + \Delta m_{y}$$

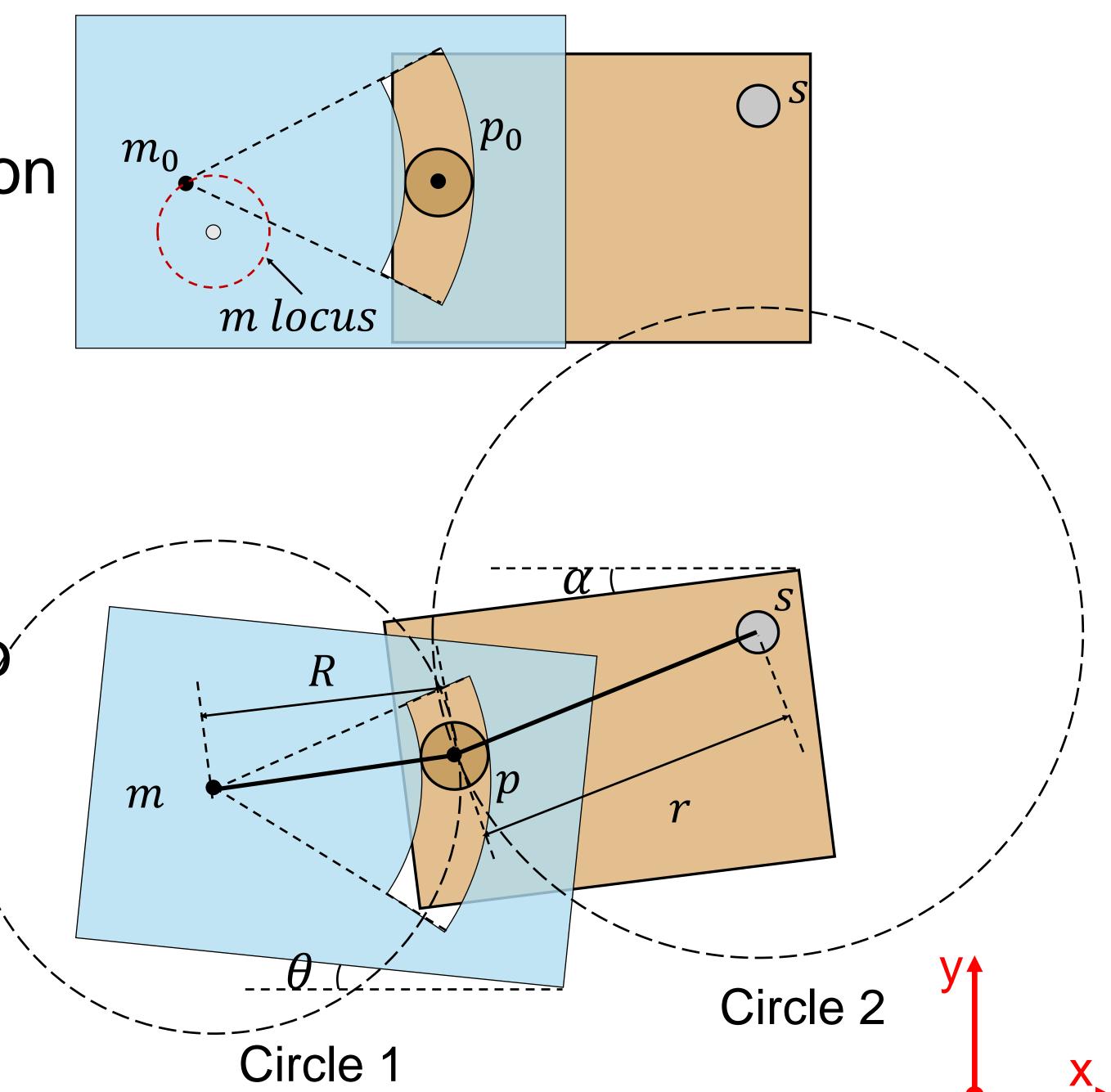




#11 $O_z T \rightarrow O_z$

Denote P_d 's rotation angle as θ , translation distance along x-axis as Δm_x , and translation distance along y-axis as Δm_y . Denote P_f 's rotation angle as α .

The equation to compute α is based on computing the driver-follower joint center p, which is at the intersection between the two circles.



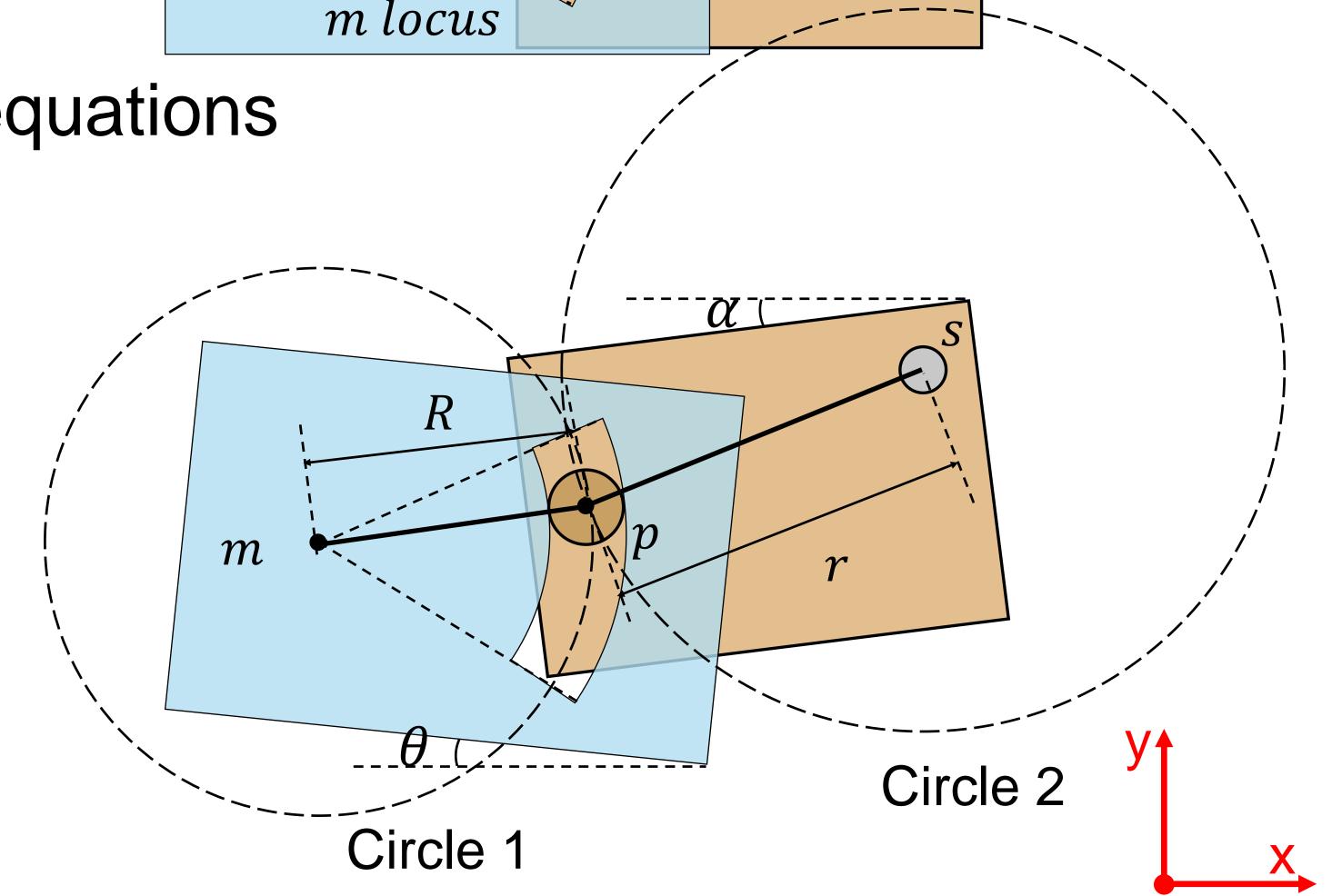
The 2 circles that p locates are

Circle 1: center m; radius $R = \|p_0 - m_0\|$

Circle 2: center s; radius $r = ||p_0 - s||$

$$\begin{cases} (p_x - m_x)_2 + (p_y - m_y)^2 = R^2 \\ (p_x - s_x)^2 + (p_y - s_y)^2 = r^2 \end{cases}$$

Note that m_0 and m are computed in the same way as in #2 $R_z \rightarrow O_z$



By solving above two equations, we get

$$p_{y} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a} + s_{y}$$

$$p_{x} = \frac{r^{2} - R^{2} + m_{x}'^{2} + m_{y}'^{2} - 2m_{y}'(p_{y} - s_{y})}{2m_{x}'} + s_{x}$$

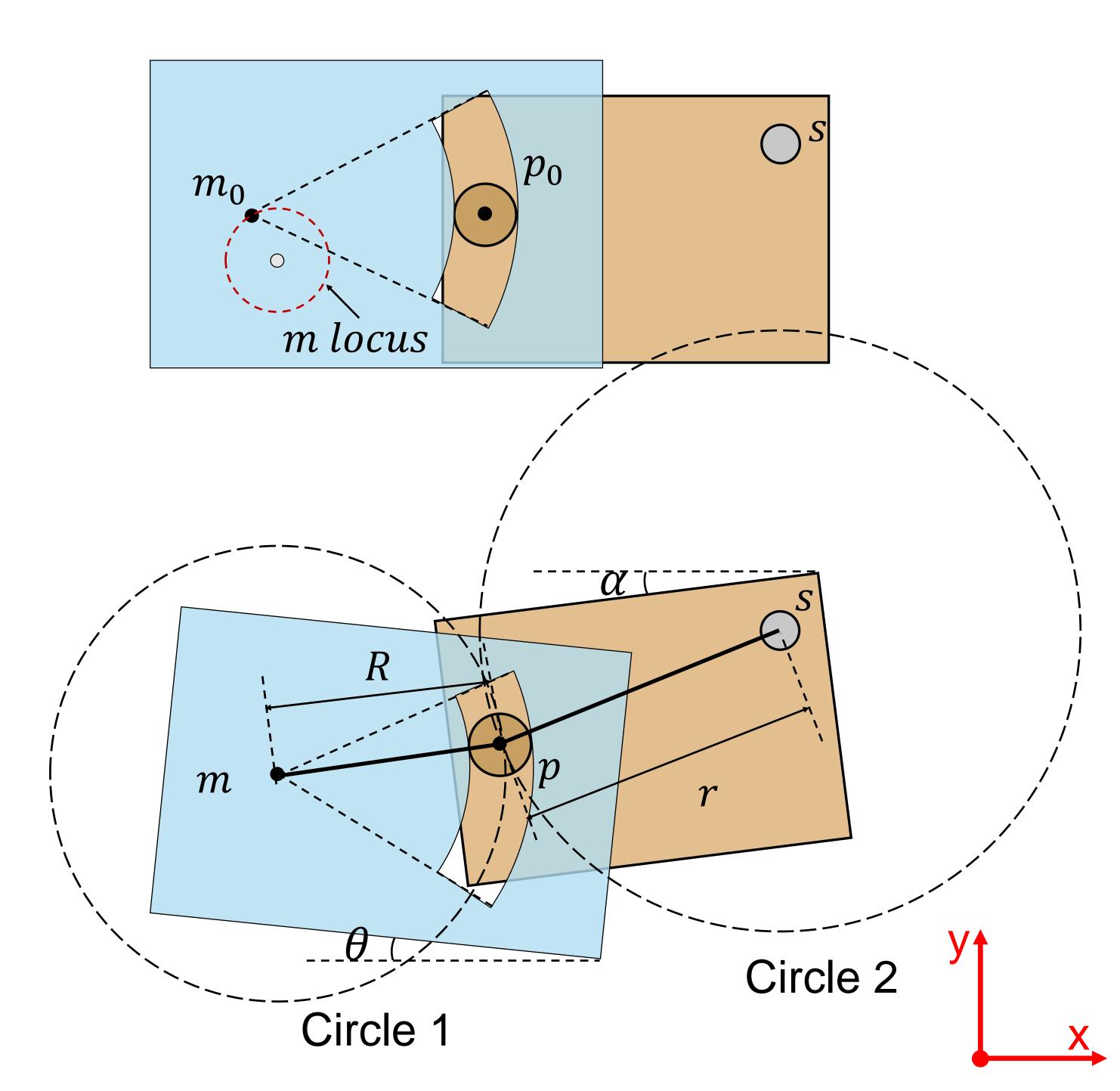
$$m_{x}' = m_{x} - s_{x}$$

$$m_{y}' = m_{y} - s_{y}$$

$$a = 4(m_{x}'^{2} + m_{y}'^{2})$$

$$b = -4m_{y}'(r^{2} - R^{2} + m_{x}'^{2} + m_{y}'^{2})$$

$$c = (r^{2} - R^{2} + m_{x}'^{2} + m_{y}'^{2})^{2} - (2m_{x}'R)^{2}$$

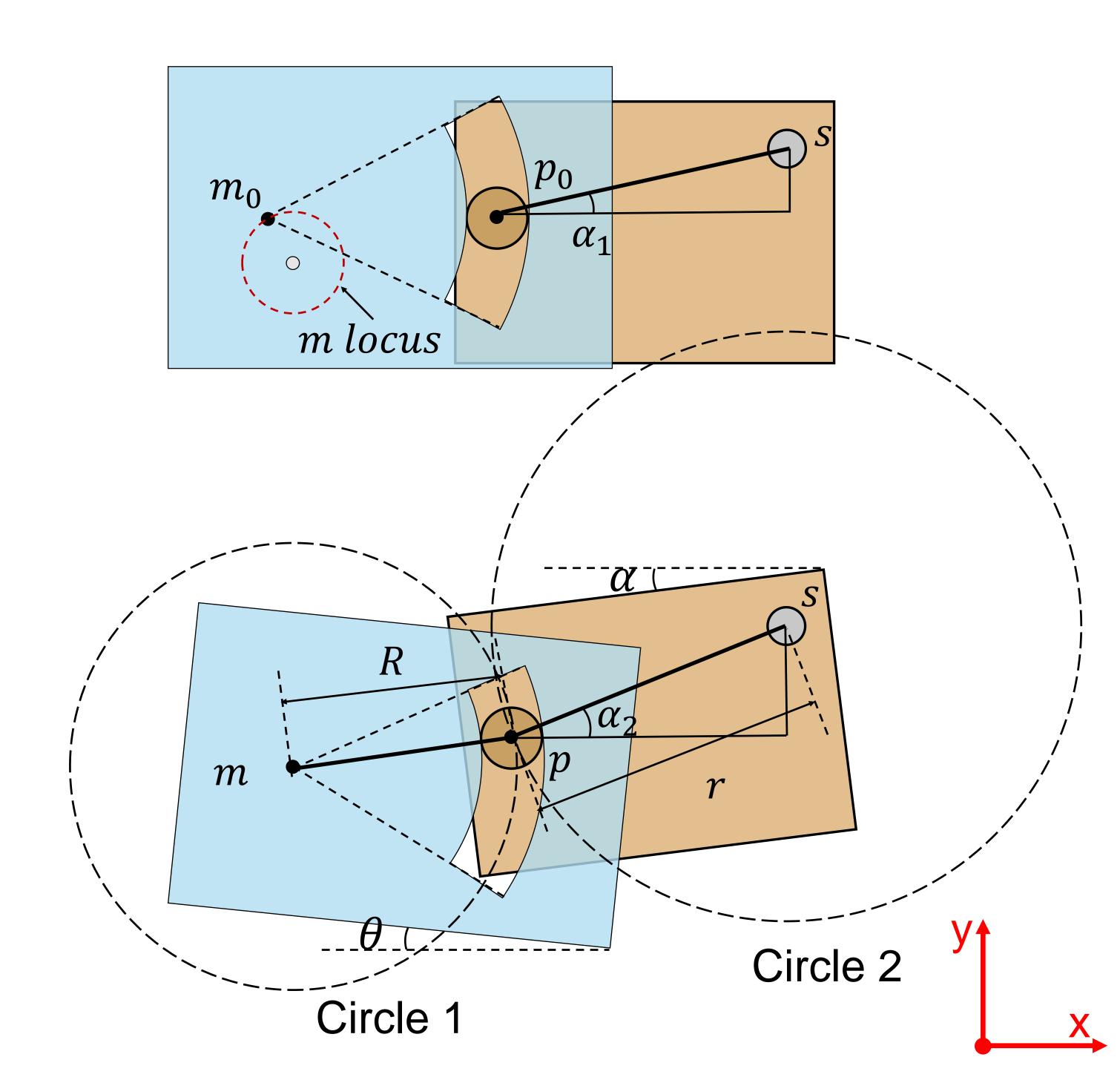


Based on the calculated p, we have

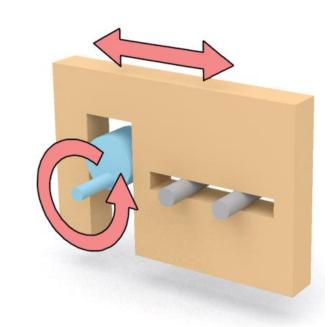
$$\alpha = \alpha_2 - \alpha_1$$

$$\alpha_1 = \tan^{-1} \left(\frac{s_y - p_{0_y}}{s_x - p_{0_x}} \right)$$

$$\alpha_2 = \tan^{-1} \left(\frac{s_y - p_y}{s_x - p_x} \right)$$



Part 2: Default Geometric Parameters of Elemental Mechanisms



#1 $R_z \rightarrow T_x$

```
• D_o: (0.00, 0.00) // driver origin (rotation center)
```

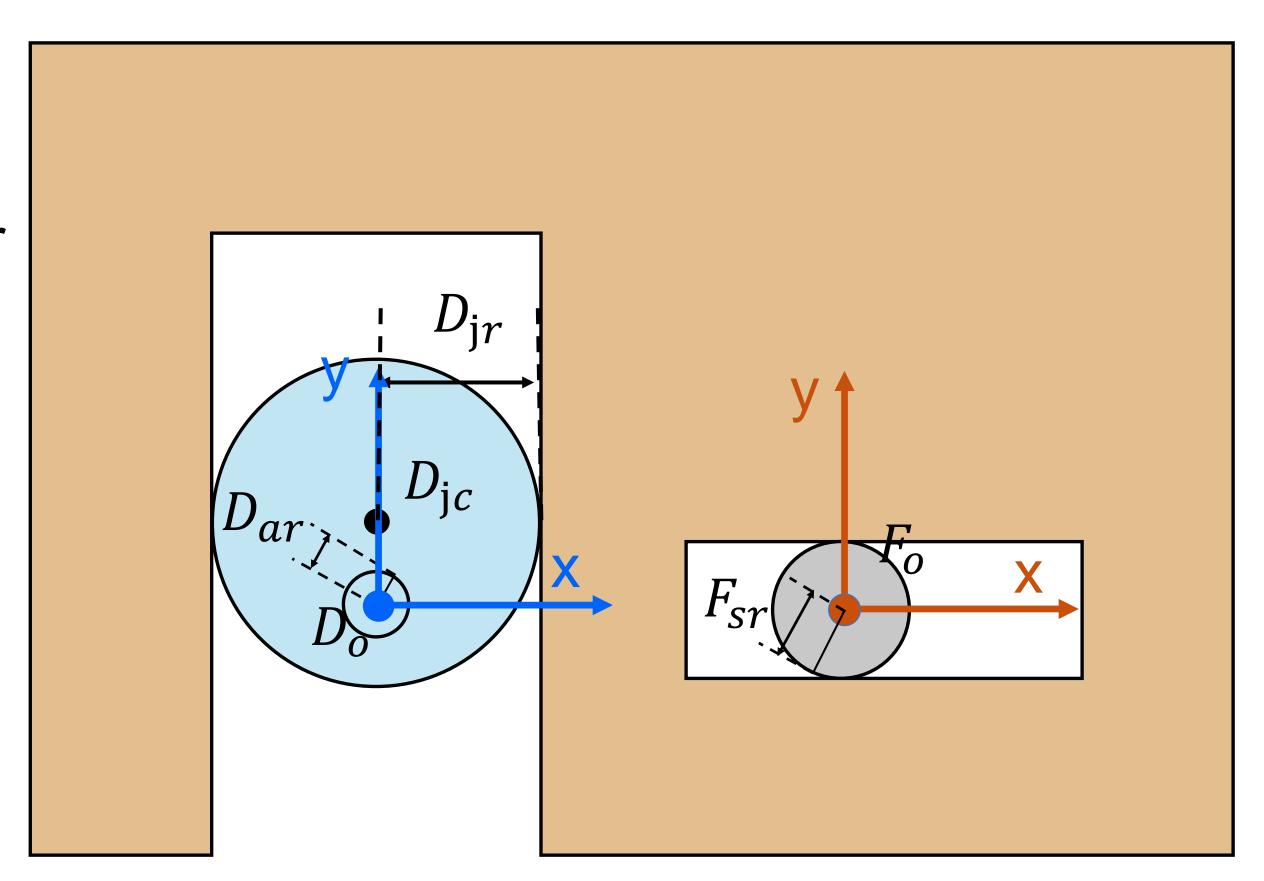
• D_{ar} : 0.03 // driver rotation axis radius

• D_{ic} : (0.00, 0.06) // driver (cam) geometric center

• D_{jr} : 0.12 // driver (cam) radius

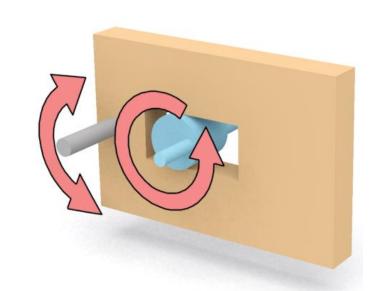
• F_o : (0.30, 0.00) // follower support center

• F_{sr} : 0.035 // follower support axis radius



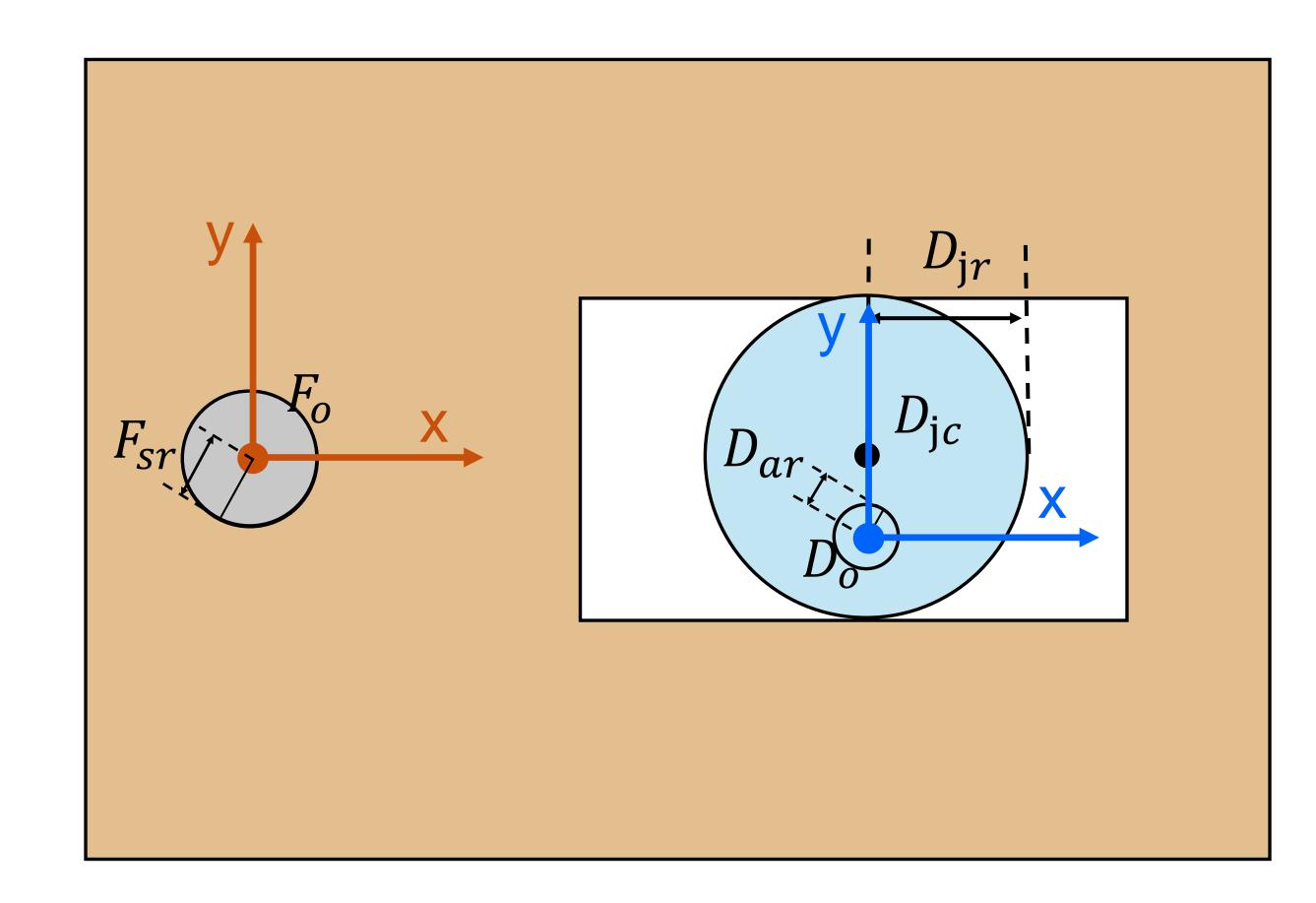
Note:

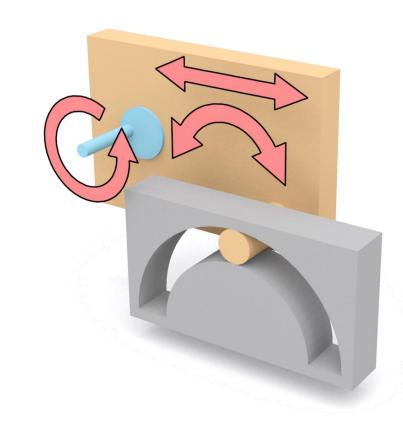
- 1) Coordinate of F_0 is relative to the driver's local coordinate (blue one);
- 2) Coordinates of follower's all other positional parameters are relative to the follower's local coordinate (orange one); Above two rules apply to all elemental mechanisms.



#2 $R_z \rightarrow O_z$

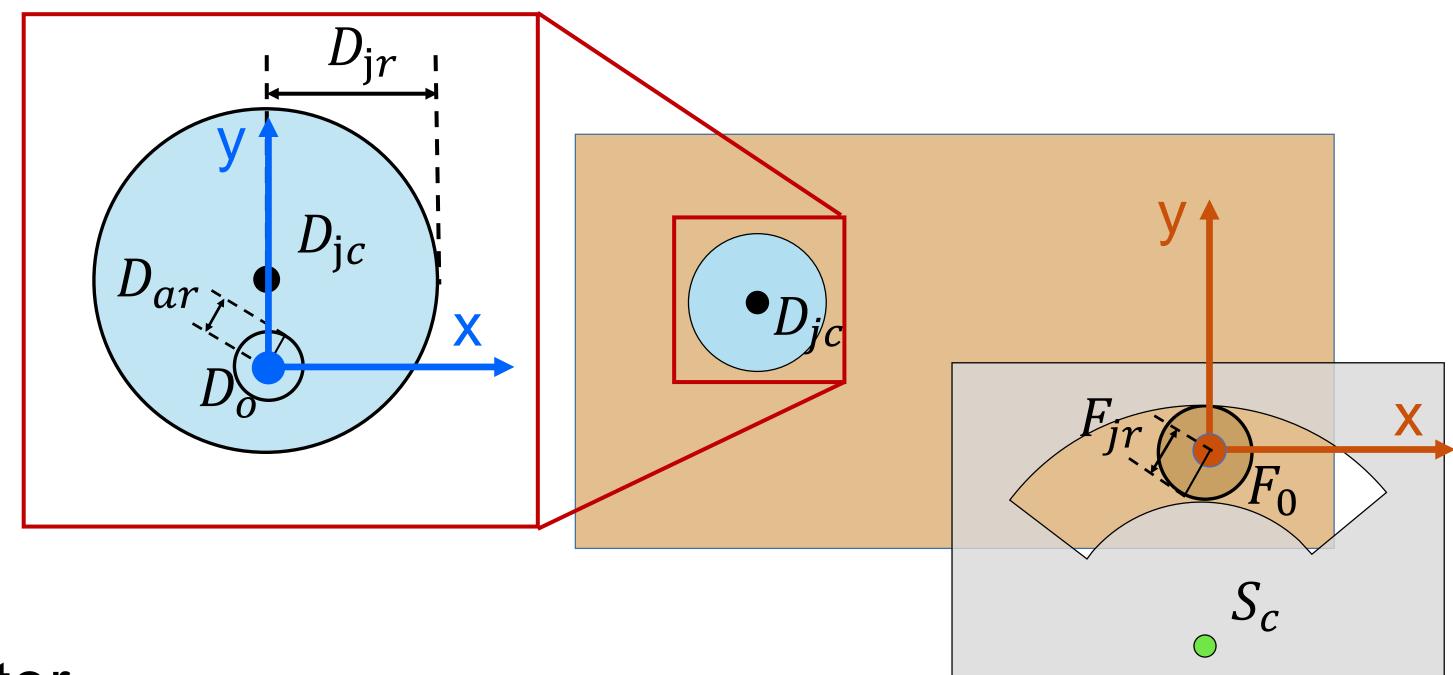
- D_o : (0.00, 0.00)
- D_{ar} : 0.03
- D_{jc} : (0.00, 0.06)
- D_{jr} : 0.12
- F_o : (-0.40, 0.10)
- F_{sr} : 0.03

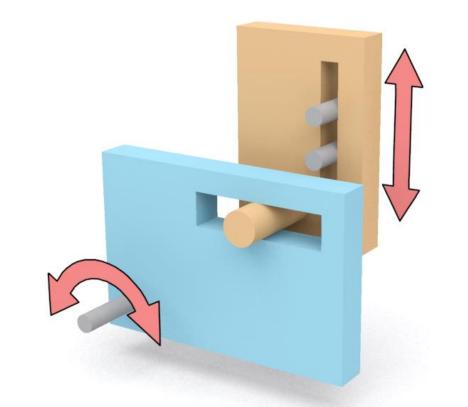




#3 $R_z \rightarrow O_z T$

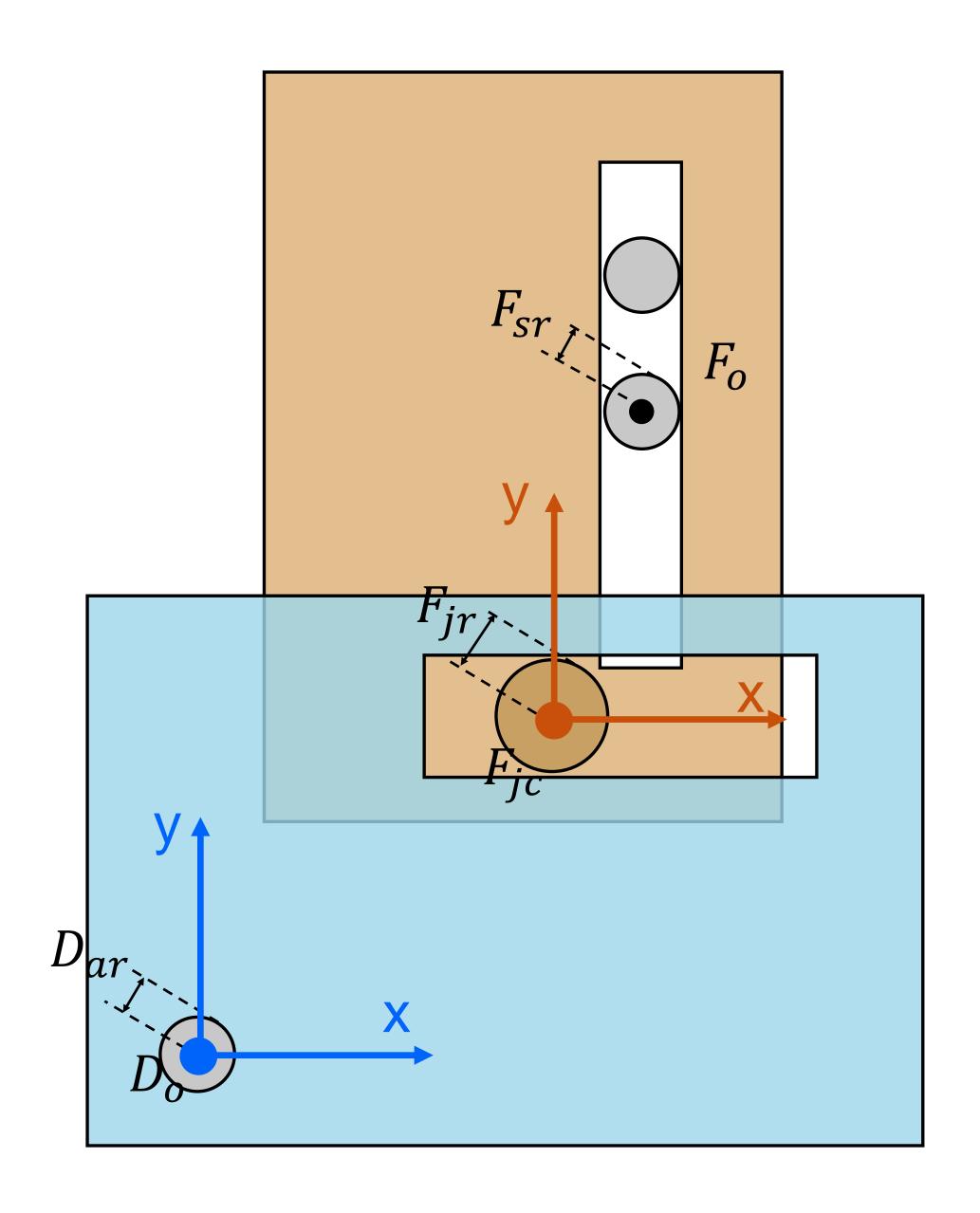
- D_o : (0.00, 0.00, 0.00)
- D_{ar} : 0.03
- D_{jc} : (0.00, 0.04)
- D_{jr} : 0.12
- F_0 : (0.60, -0.30)
- F_{jr} : 0.075
- S_c : (-0.10, -0.20, 0.10) // support center

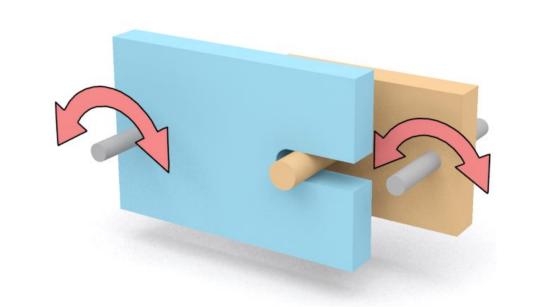




#4 $O_z \rightarrow T_y$

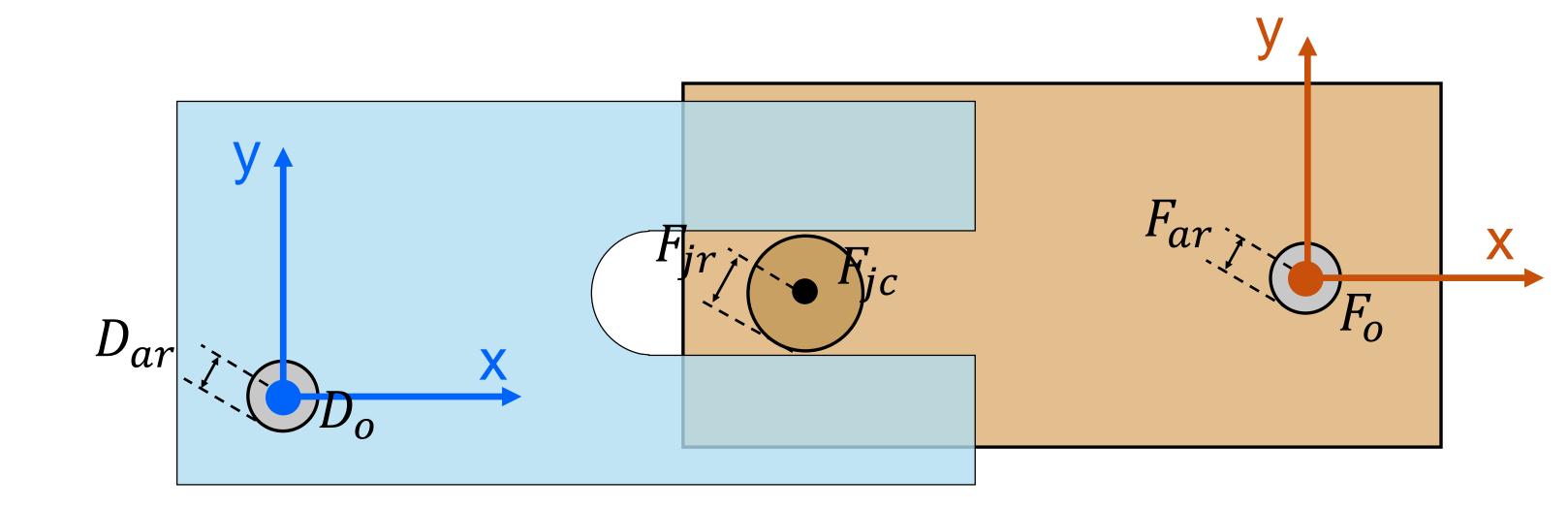
- D_o : (0.00, 0.00, 0.00)
- D_{ar} : 0.03
- F_o : (0.80, 0.60, -0.40)
- F_{jc} : (-0.2, -0.3)
- F_{jr} : 0.07
- F_{sr} : 0.035

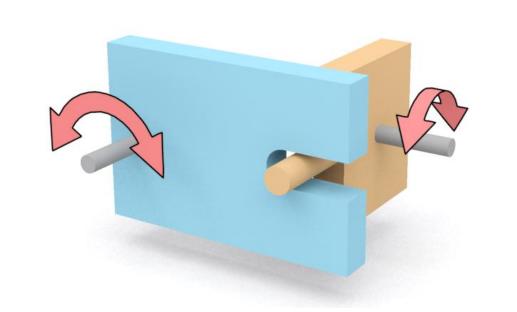




#5 $O_z \rightarrow O_z$

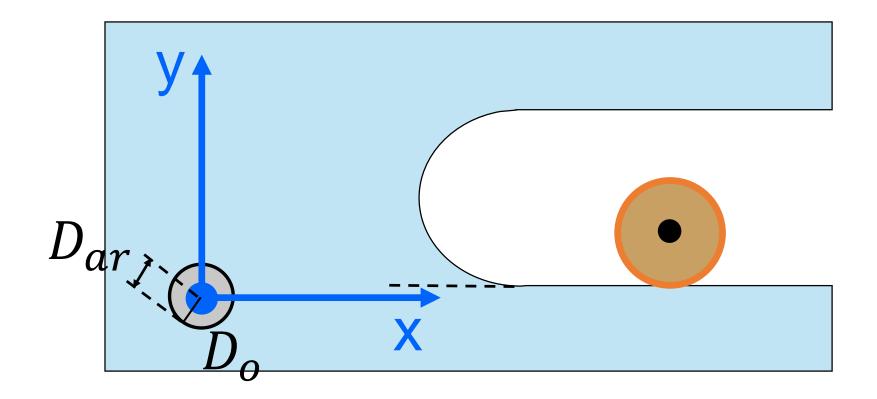
- D_o : (0.00, 0.00, 0.00)
- D_{ar} : 0.03
- F_o : (1.30, 0.20, -0.30)
- F_{ar} : 0.03
- F_{jc} : (-0.60, 0.00)
- F_{jr} : 0.06

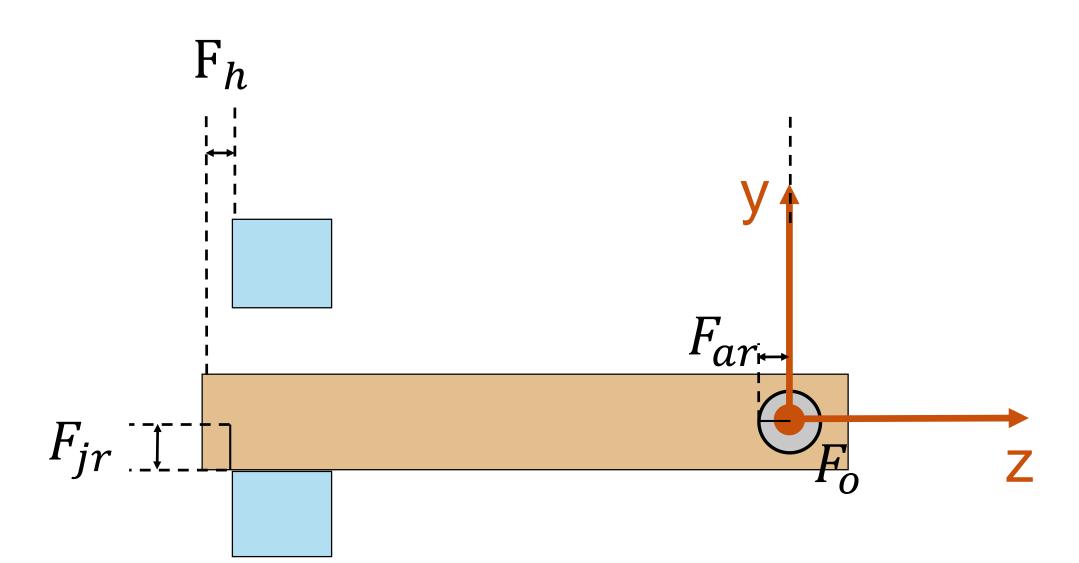


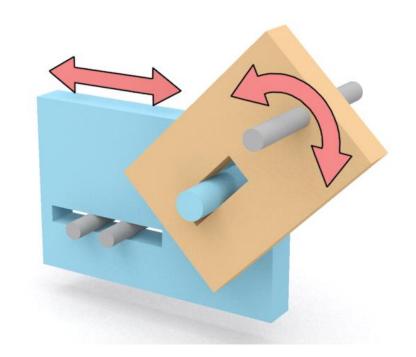


#6 $O_z \rightarrow O_x$

- D_o : (0.00, 0.00, 0.00)
- D_{ar} : 0.03
- F_o : (0.70, 0.00, -0.80)
- F_{ar} : 0.03
- F_{jr} : 0.06
- F_h : 0.05

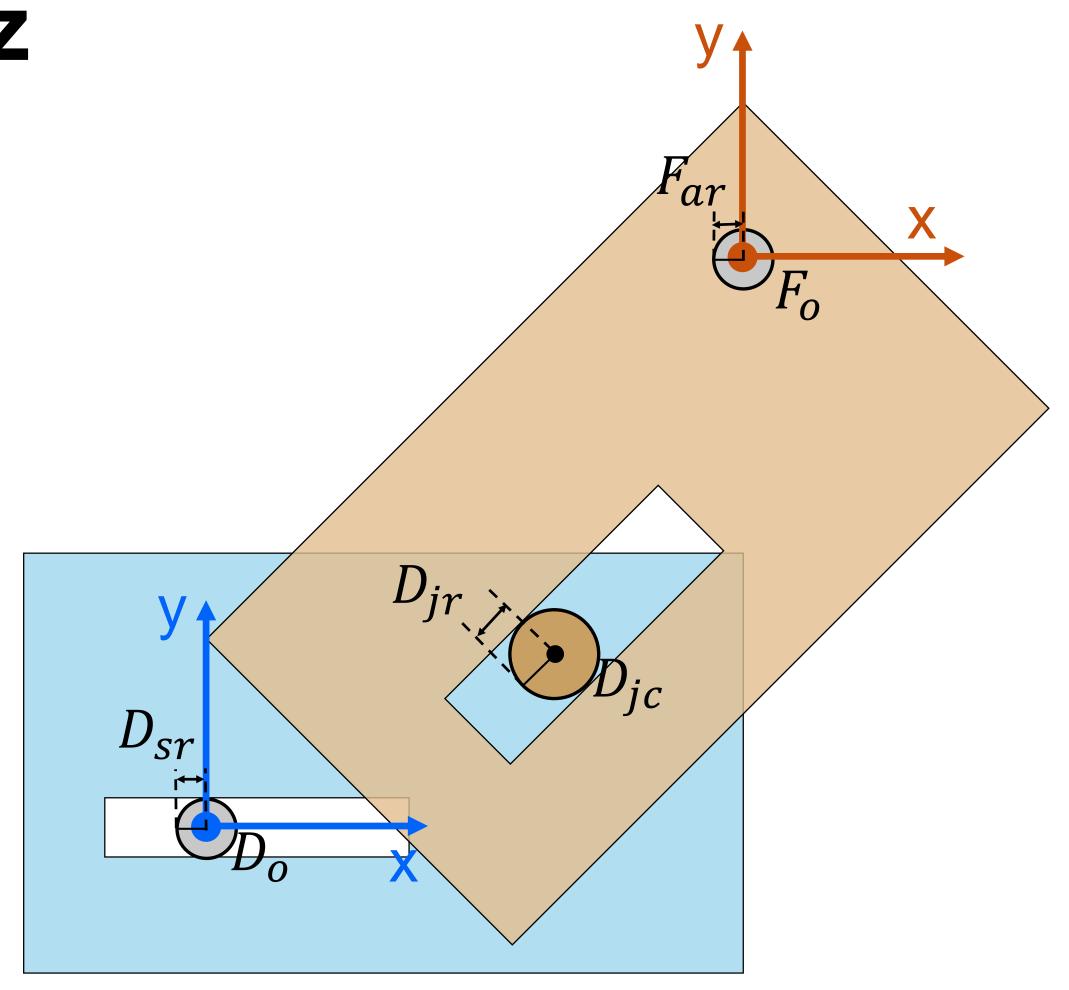


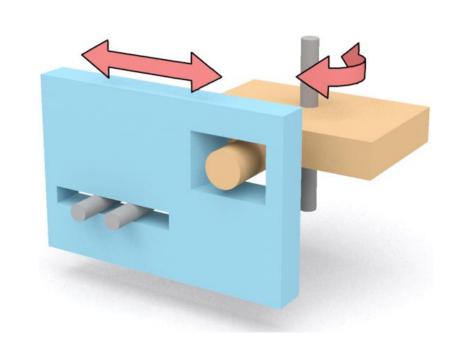




#7 $T_X \rightarrow O_Z$

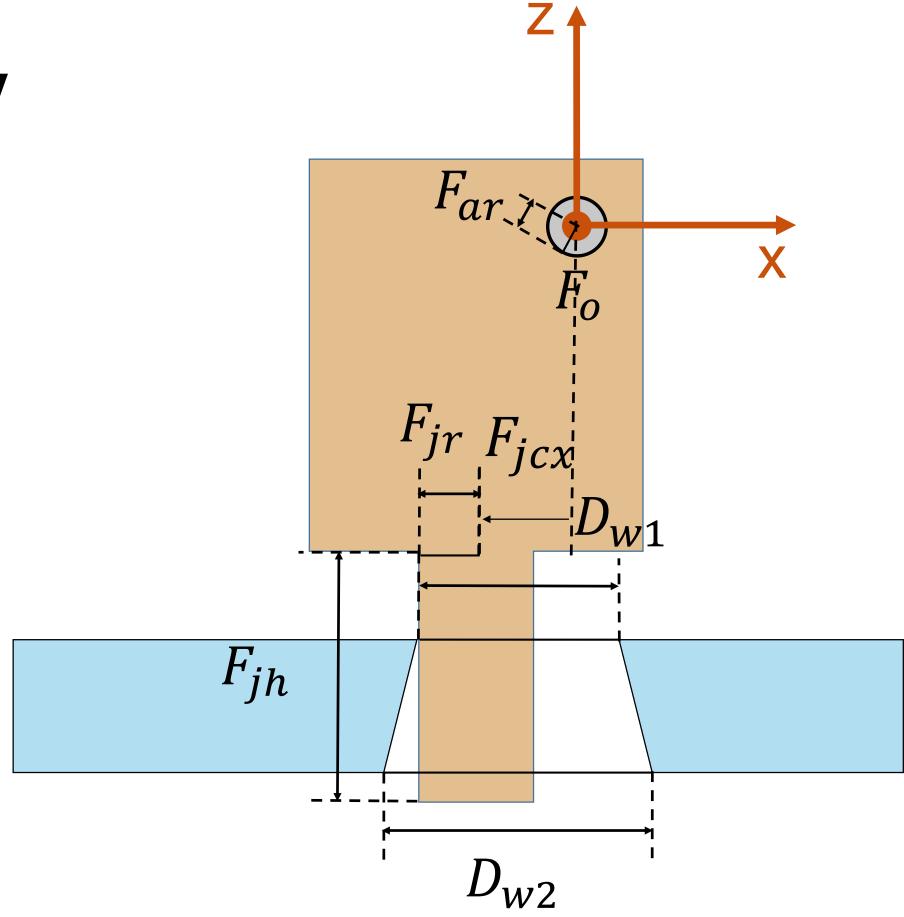
- D_o : (0.00, 0.00, 0.00)
- D_{jc} : (0.50, 0.25)
- D_{jr} : 0.04
- D_{sr} : 0.035
- F_o : (0.70, 0.55, 0.30)
- F_{ar} : 0.035

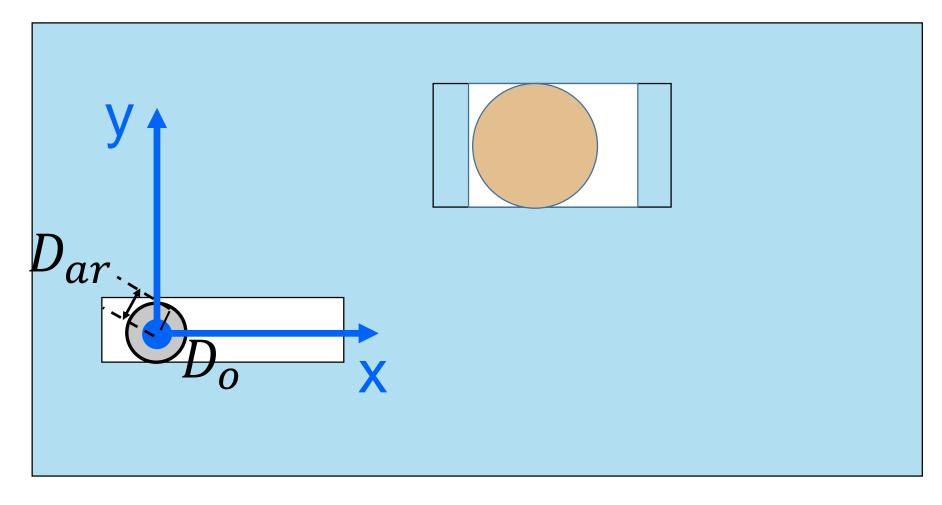


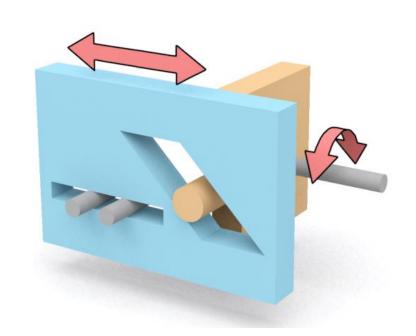


#8 $T_X \rightarrow O_y$

- D_o : (0.00, 0.00, 0.00)
- D_{ar} : 0.03
- D_{w1} : 0.20
- D_{w2} : 0.30
- (0.55, 0.30, -0.60)• *F*_o:
- F_{ar} : 0.035
- F_{jcx} : 0.05
 F_{jr} : 0.06
 F_{jh} : 0.40

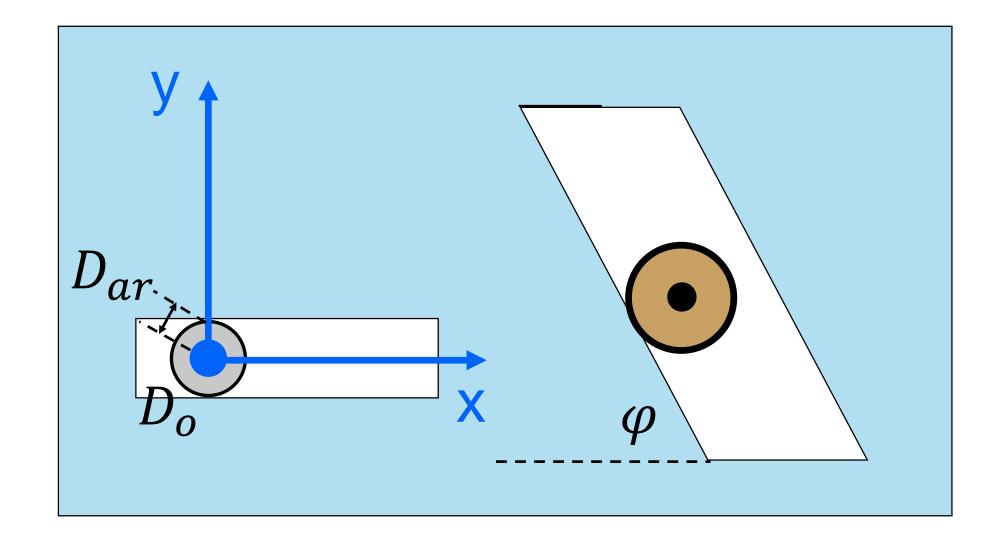


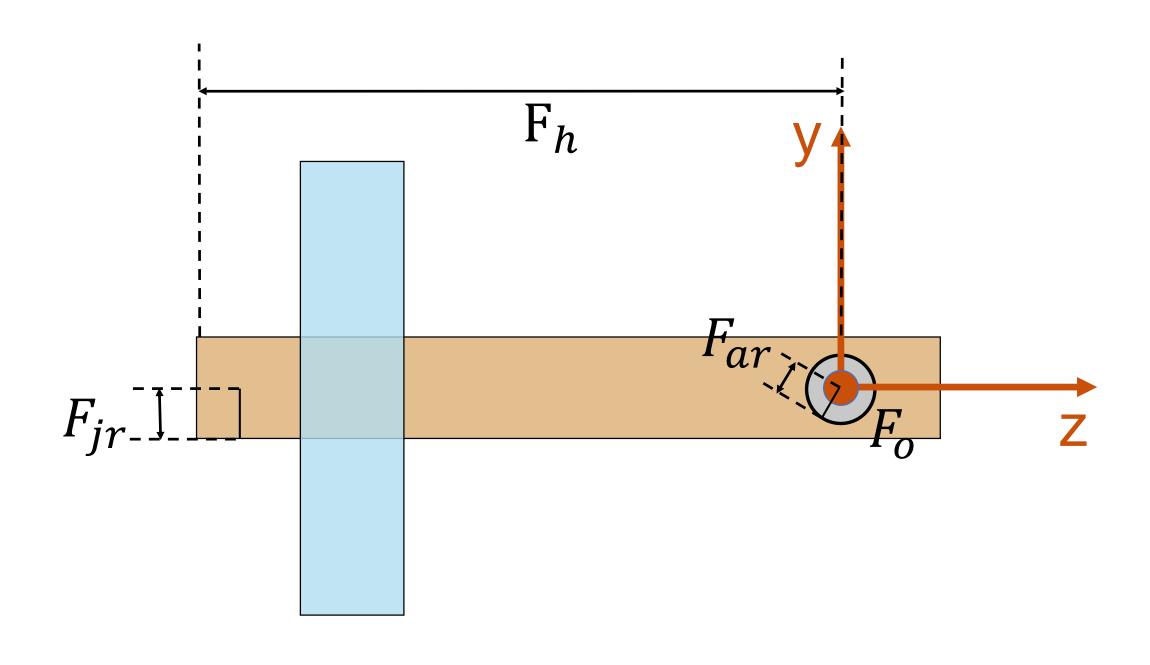


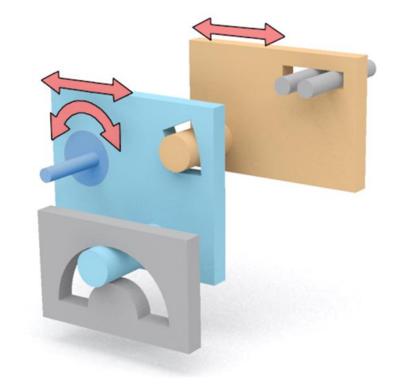


#9 $T_X \rightarrow O_X$

- D_o : (0.00, 0.00, 0.00)
- D_{ar} : 0.03
- φ : $\frac{\pi}{3}$
- F_o : (0.70, 0.55, -0.30)
- F_{ar} : 0.035
- F_{jr} : 0.04
- F_h : 0.40

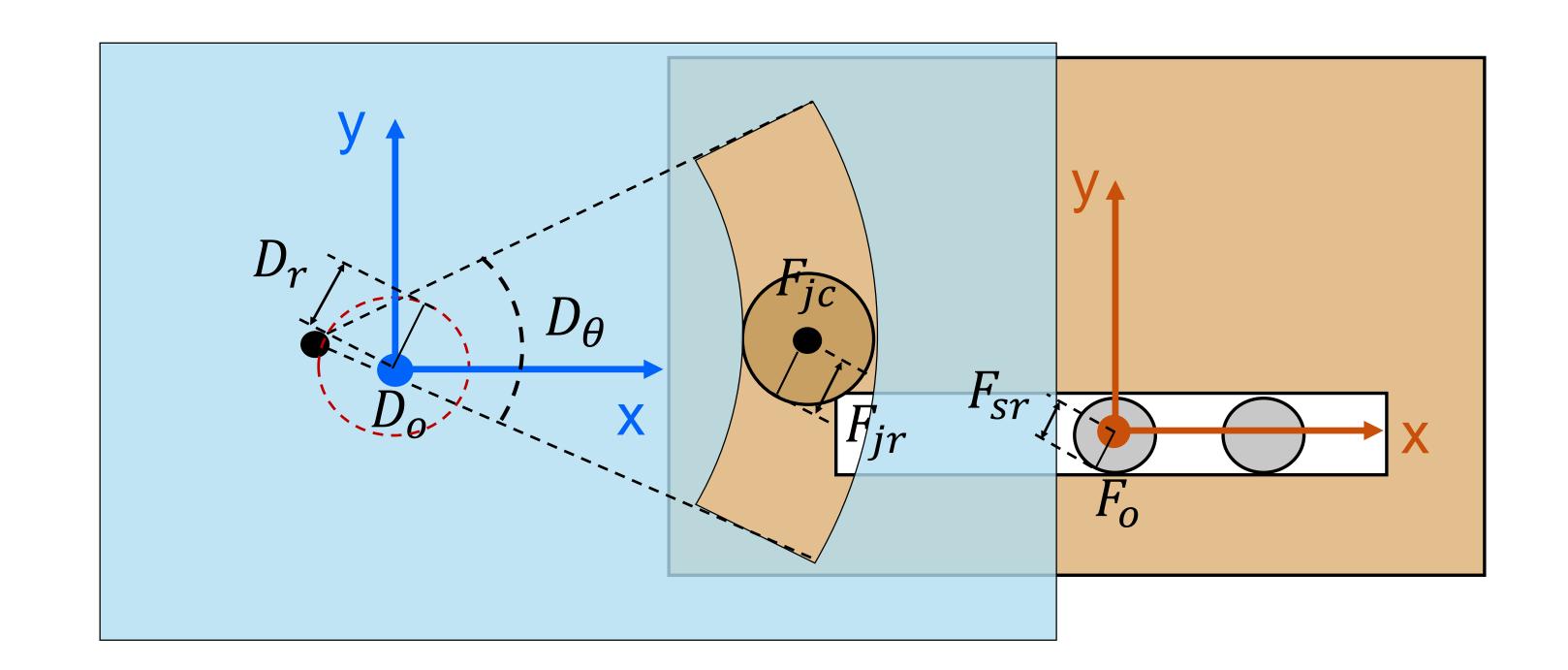


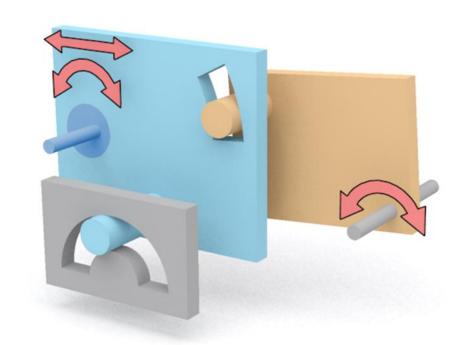




#10 $O_zT \rightarrow T_x$

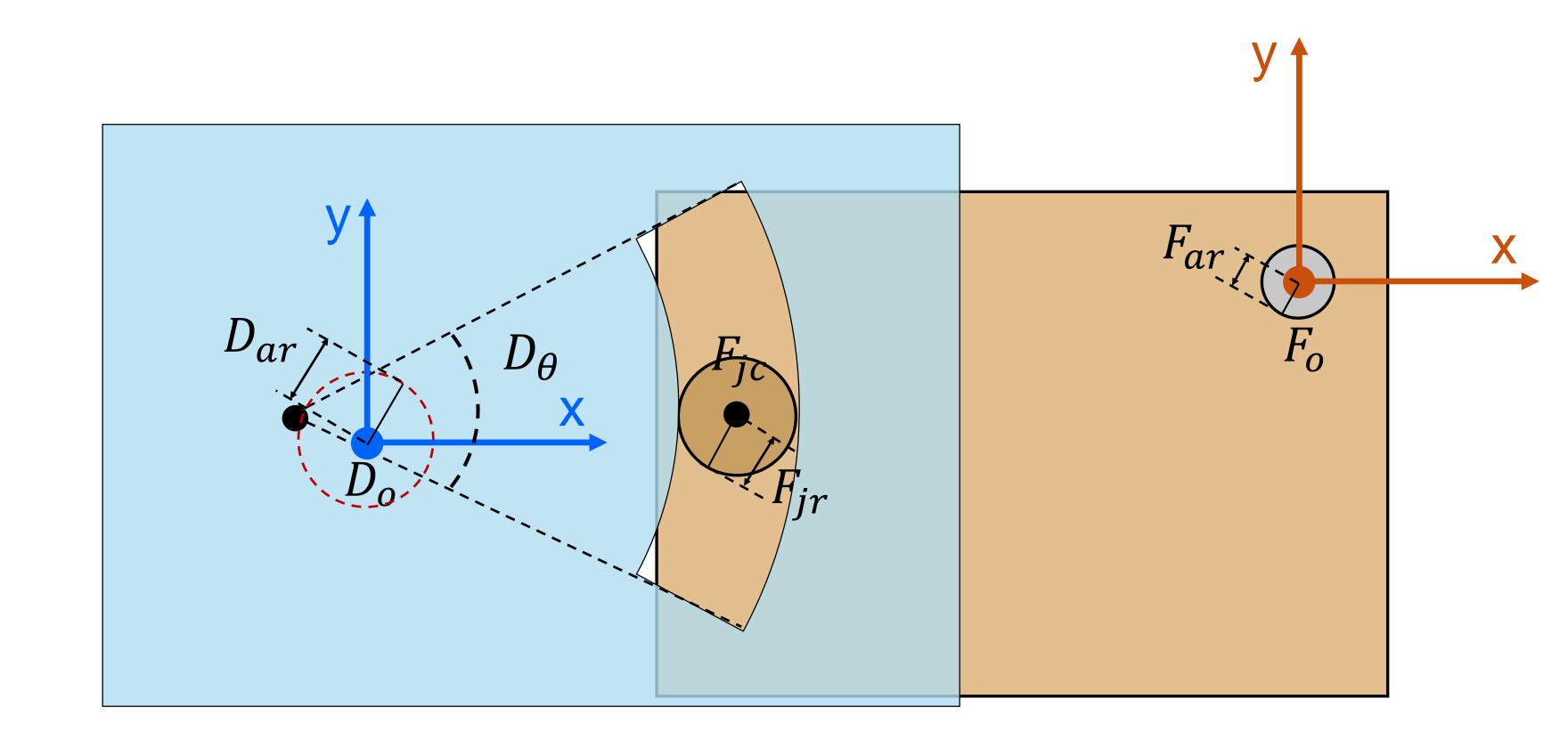
- D_o : (0.00, 0.00, 0.00)
- D_{θ} : $\left(-\frac{\pi}{9}, \frac{\pi}{9}\right)$
- F_o : (1.20, -0.20, -0.30)
- F_{jc} : (-0.40, 0.30)
- F_{jr} : 0.075
- F_{sr} : 0.035





#11 $O_z T \rightarrow O_z$

- D_o : (0.00, 0.00, 0.00)
- D_{θ} : $(-\frac{\pi}{9}, \frac{\pi}{9})$
- F_o : (0.90, 0.30, -0.30)
- F_{jc} : (-0.40, -0.30)
- F_{jr} : 0.075
- F_{ar} : 0.03



Part 3:

Failure Cases of Kinematics Computation

Overview

Among the 11 eleMechs, only 3 of them have failure cases when computing kinematics. All these 3 eleMechs require computing intersection points between two geometries, which may not be always satisfied.

#3
$$R_z \rightarrow O_z T$$

#5
$$O_z \rightarrow O_z$$

#11
$$O_z T \rightarrow O_z$$

#3 $R_z \rightarrow O_z T$

When the distance between m and s is larger than R + r, $R_z \rightarrow O_z T$ fails, because the circle centered at m and the circle centered at s do not have any intersection points.

$$\begin{cases} (x - m_x)^2 + (y - m_y)^2 = R^2 \\ (x - s_x)^2 + (y - s_y)^2 = r^2 \end{cases}$$

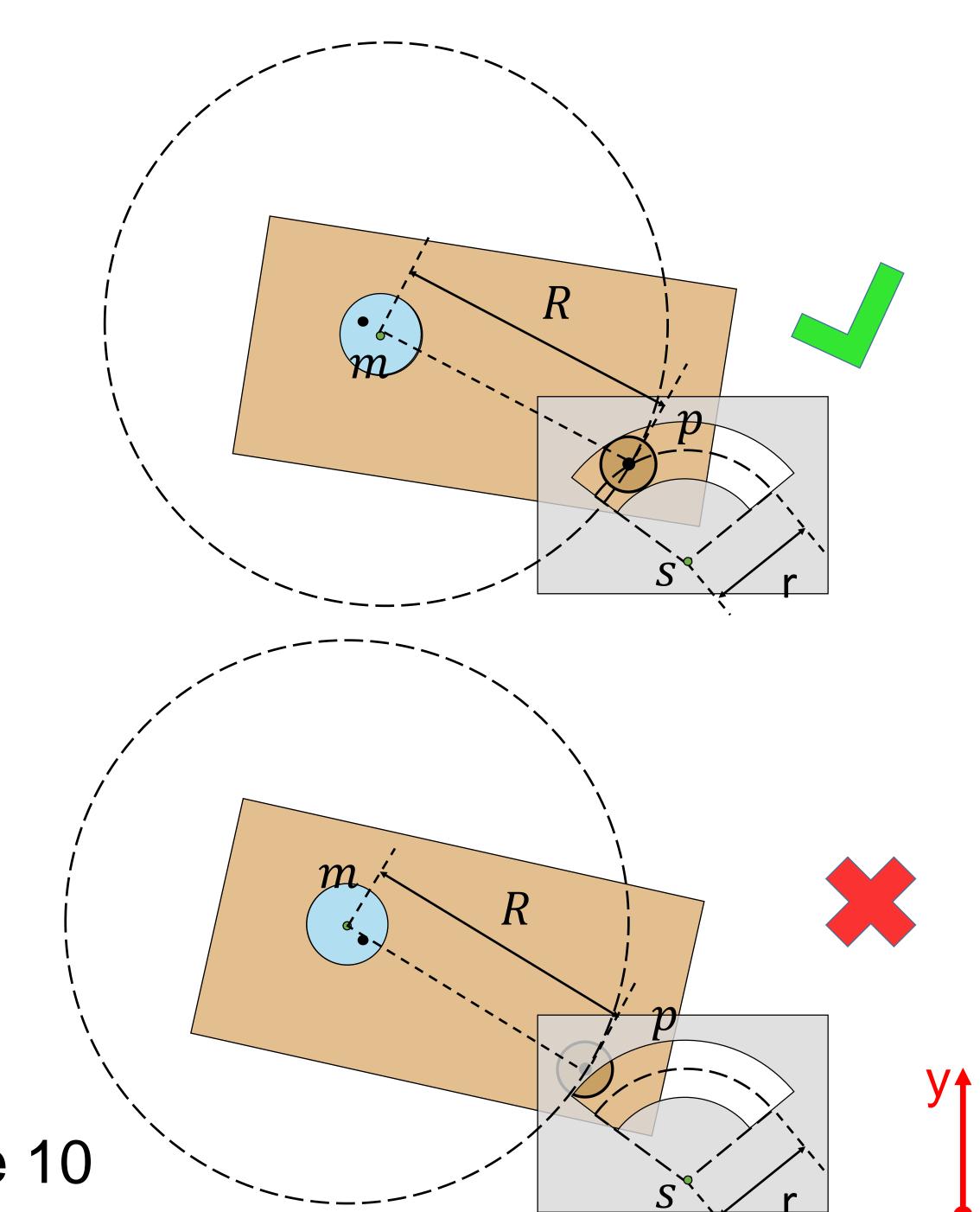
Let p be the intersection point (if any), then

$$p_{y} = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + s_{y}$$

The failure cases happen when

$$b^2 - 4ac < 0$$

Note: equations to compute a, b, and c are on page 10



#5 $O_z \rightarrow O_z$

When line l (green line in the right figures) has no intersection with the circle centered at s, $O_z \rightarrow O_z$ fails.

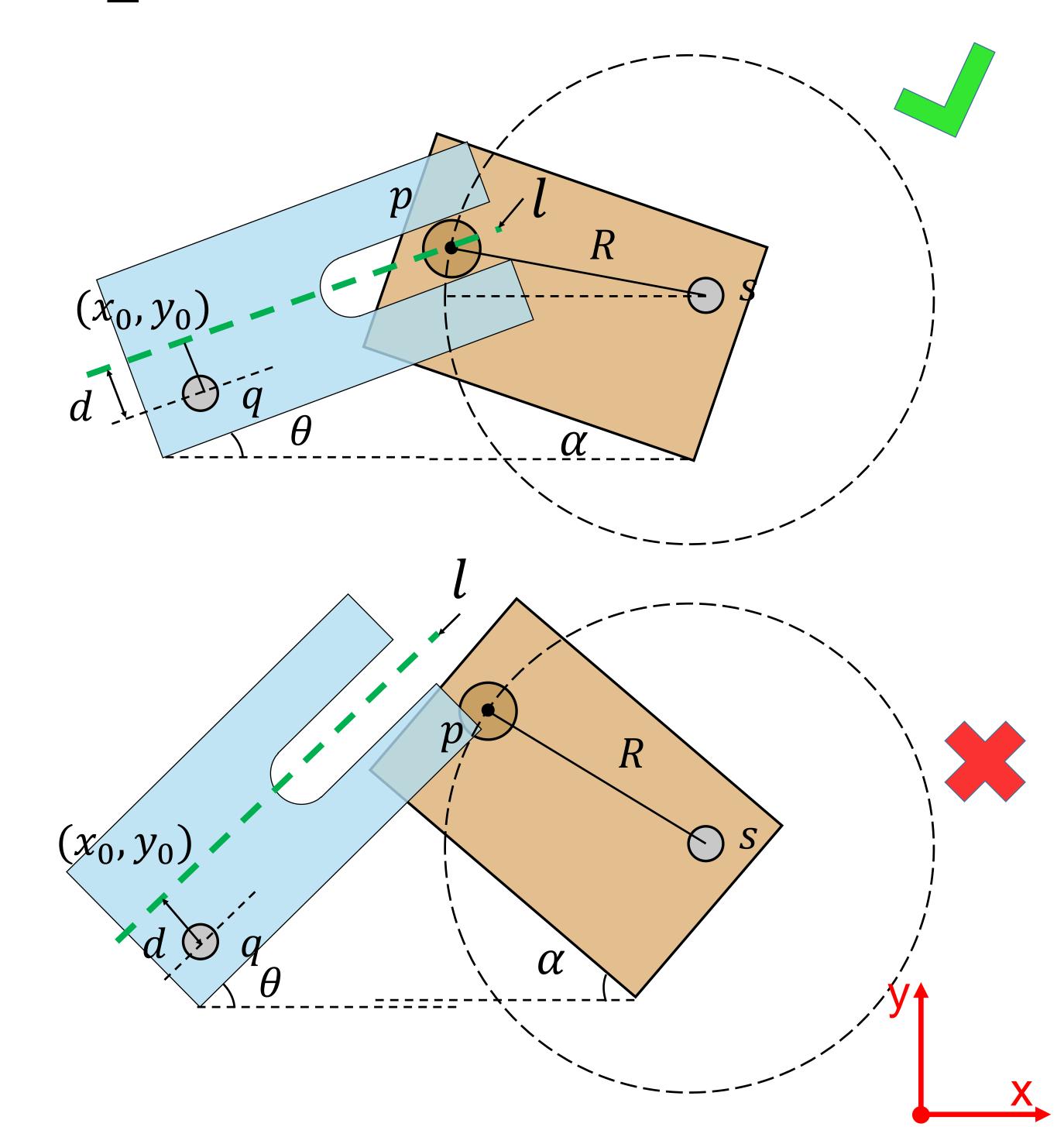
Let p be the intersection point (if any), then

$$p_x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

The failure cases happen when

$$b^2 - 4ac < 0$$

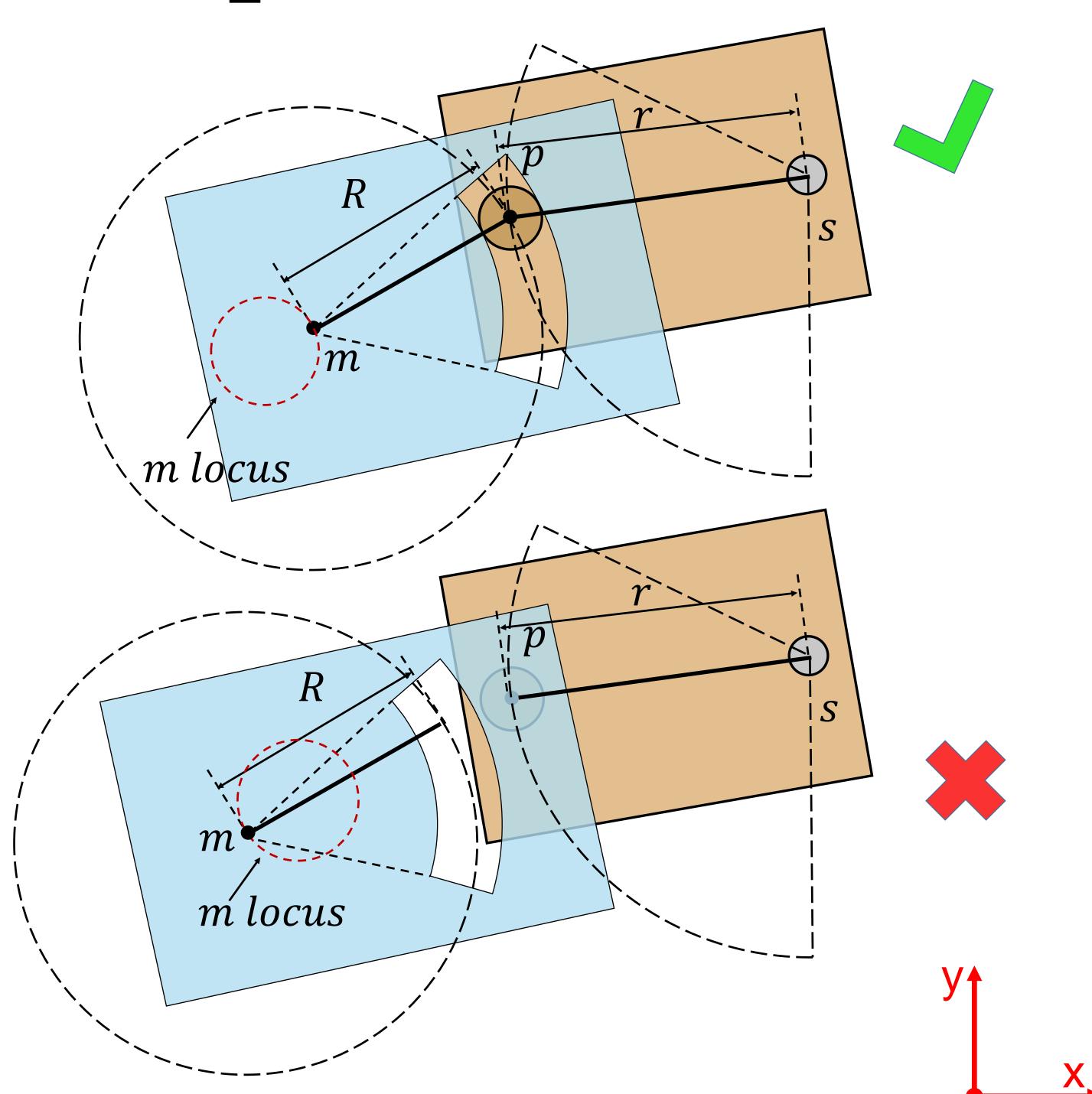
Note: equations to compute a, b, and c are on page 14



#11 $O_z T \rightarrow O_z$

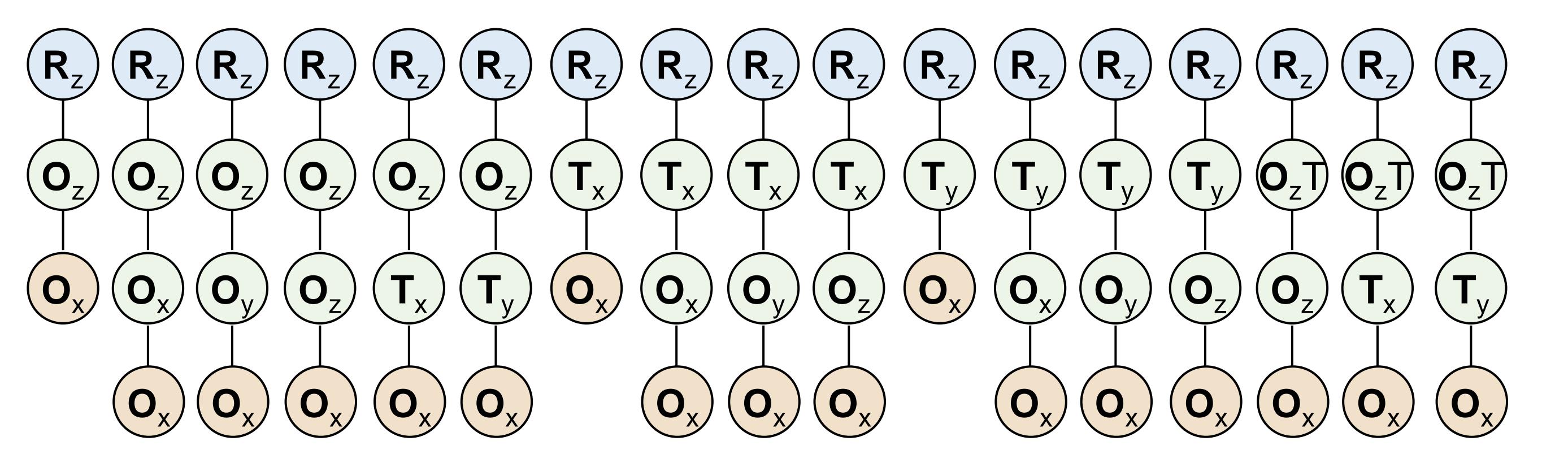
When the distance between m and s is larger than R + r, $O_z T \rightarrow O_z$ fails.

This failure case is similar to that of $\#3 R_z \rightarrow O_z T$

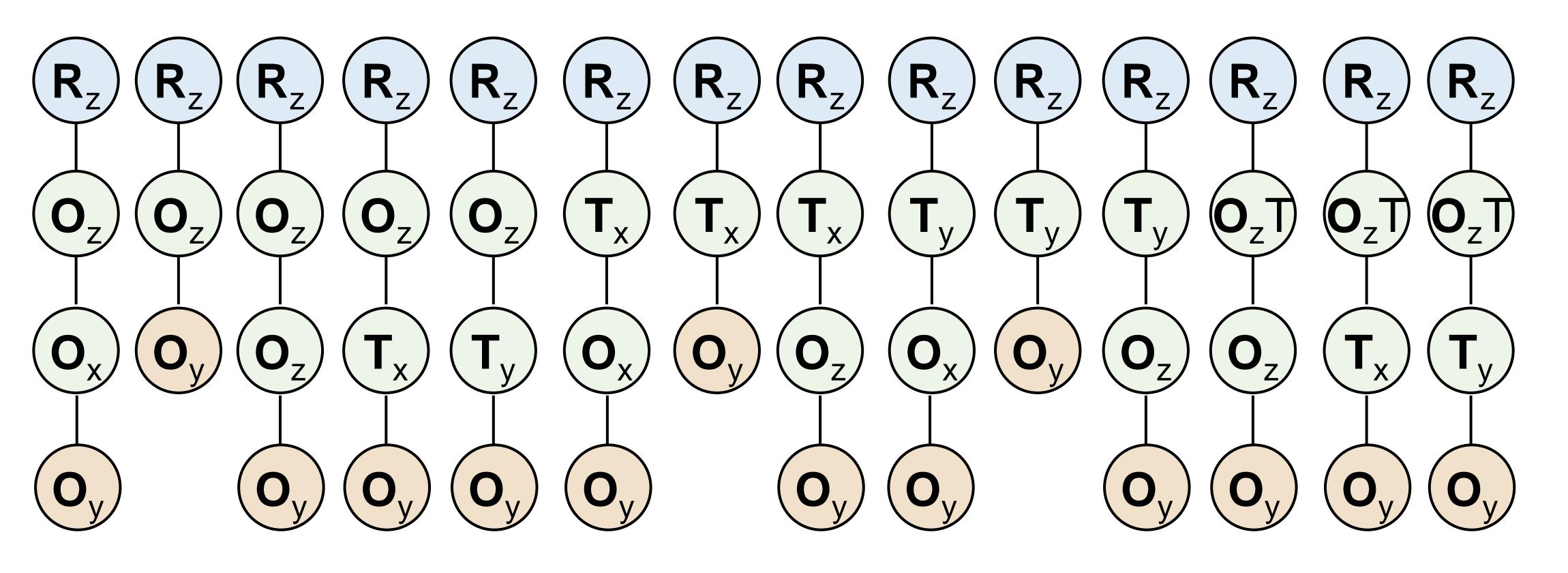


Part 4: All Possible Motion Transfer Chains (length ≤ 3)

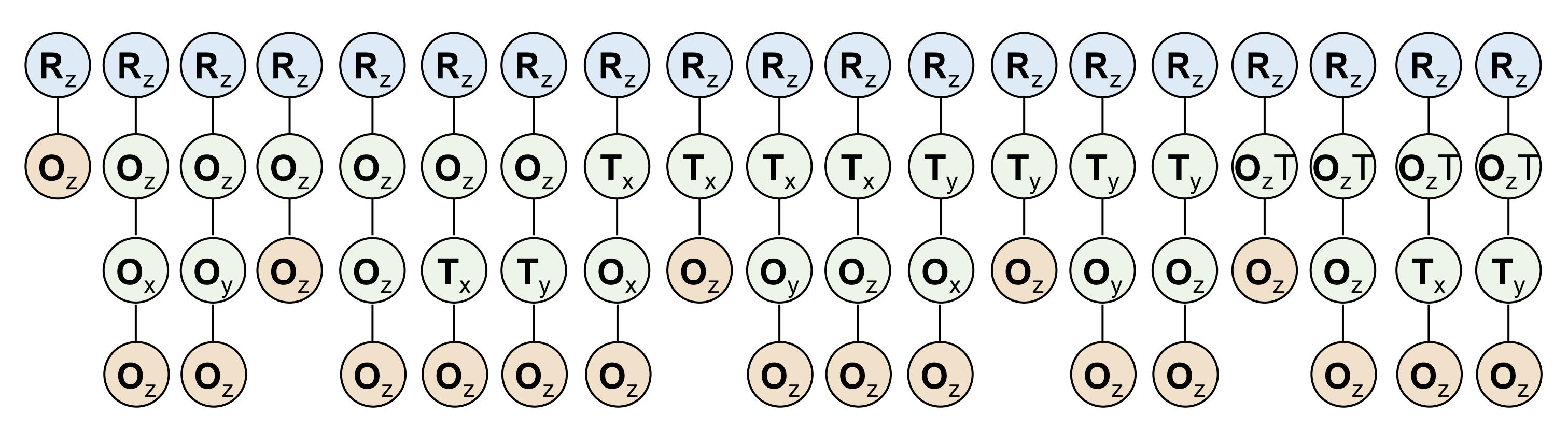
End-effector Motion: O_X



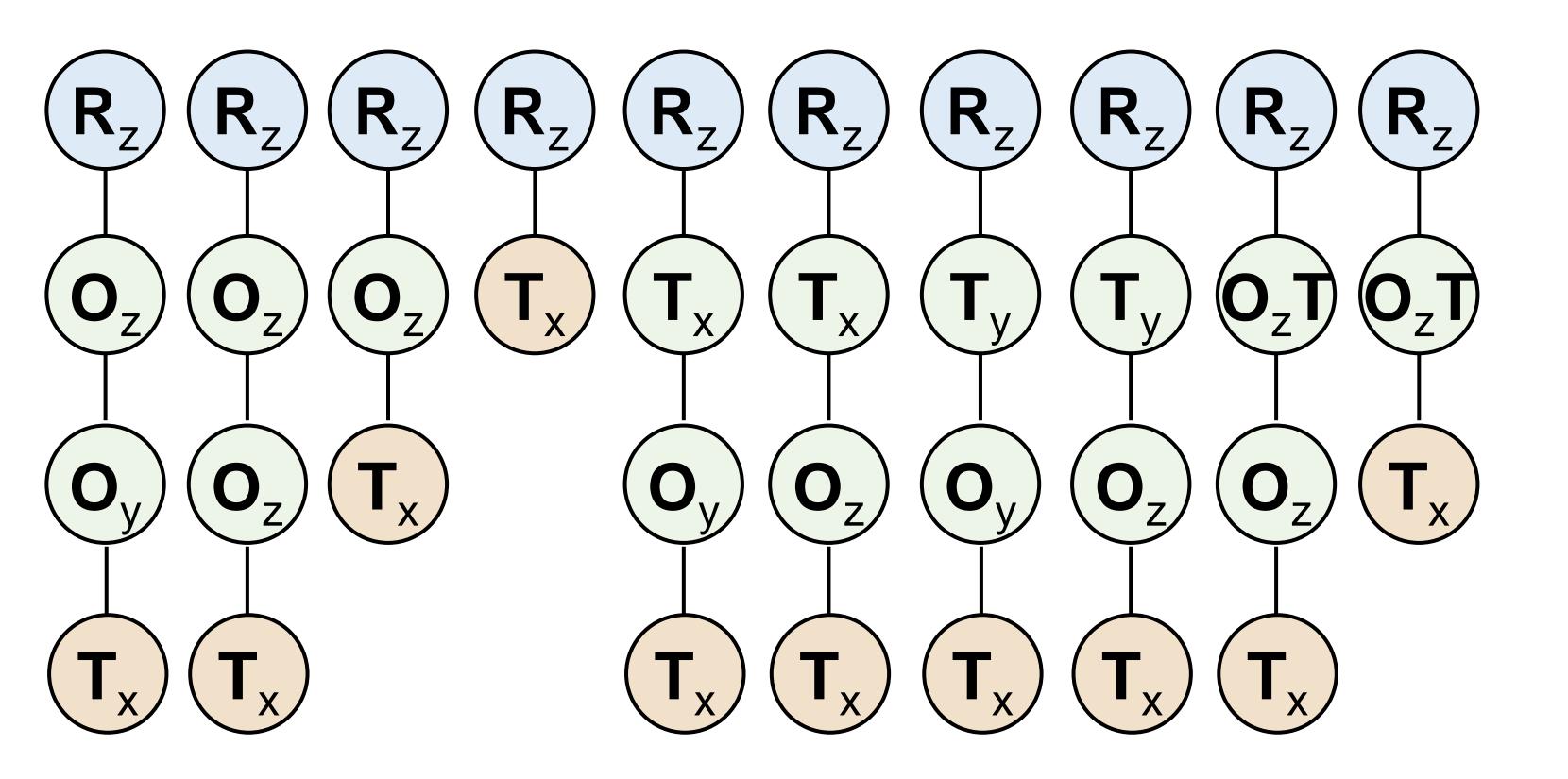
End-effector Motion: O_y



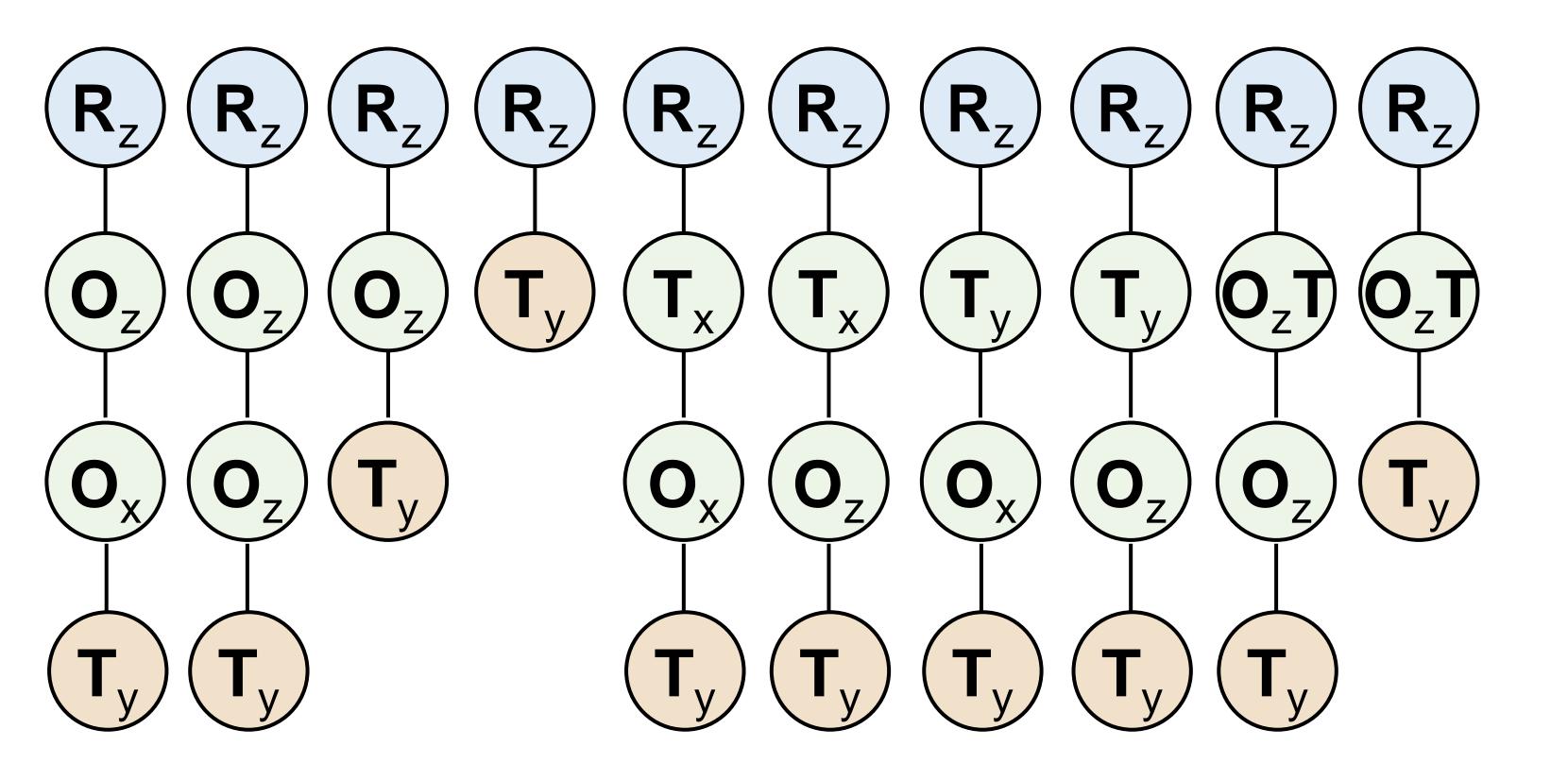
End-effector Motion: O_z



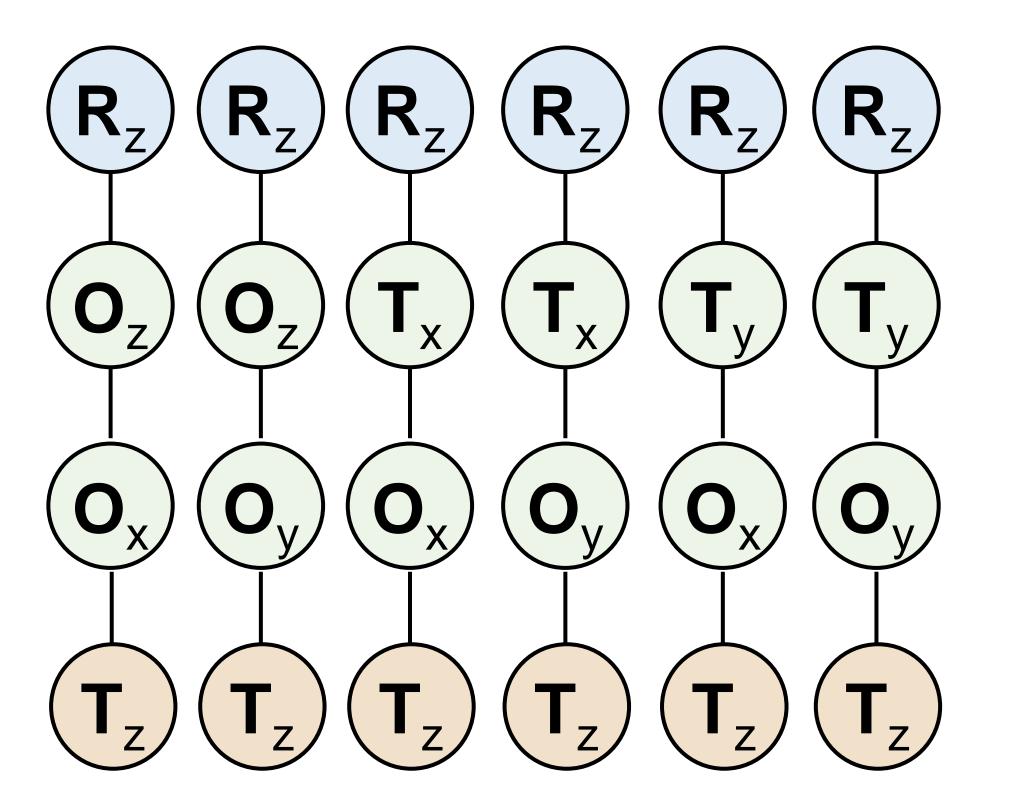
End-effector Motion: T_x



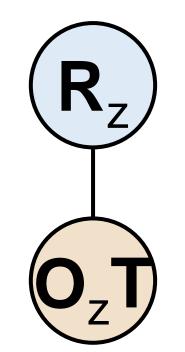
End-effector Motion: T_y



End-effector Motion: T_z



End-effector Motion: O_zT



The End