
Supplementary Material for
Spatial-Temporal Motion Control via Composite Cam-follower Mechanisms

This supplementary material is composed of four parts. The first
part presents an experiment to show that the follower motion axis vs

should not deviate too much from its default direction (see Section
4.1 and Figure 7 in the paper). The second part provides details
about the kinematic modeling of camMechs (see Section 4.2 in the
paper). The third part provides details about our approach to model
dynamics of a given camMech (see Section 4.3 in the paper). The
last part presents an experiment to determine a suitable number of
control points for the unknown function s(t) represented as a cubic
spline (see Section 6.1 in the paper).

1 Follower-support Joint Orientation

For each class of camMech, the orientation of the follower-support
joint is defined by a vector vs, called the follower motion axis. By
default, vs is parallel with one of the major axes of the camMech’s
local fame, as shown in Figure 1(a). To support more flexible fol-
lower motion, vs can deviate from its default direction by an angle
α; see Figure 1(b-g). In our design, we prefer a small deviation
angle α. This is because a larger deviation angle α will likely lead
to worse dynamic performance of the camMech.

To support this statement, we use our dynamic modeling approach
(see Section 4.2 in the paper) to compute a required motor torque
to drive each of the seven camMechs for a whole motion period.
To ensure a fair comparison, we assume that: 1) the external load
forces for all the seven camMechs are the same; 2) the cams in the

Figure 1: (a) The follower motion axis vs is parallel with the cam
axis for camMech 1T1R by default. (b-g) The follower motion axis
vs deviates from its default direction (see the dashed line) by an
angle α of 10, 20, 30, 40, 50, 60 degrees, respectively.

Figure 2: The motor torque ∣τ c(t)∣ required to drive the cam in
each of the seven camMechs in Figure 1 for a whole motion period.
The correspondence between the torque curves and the camMechs
in Figure 1 is based on the value of the deviation angle α.

camMechs rotate uniformly with the same speed. Figure 2 visualizes
the required motor torque ∣τ c(t)∣, t ∈ [0, T ], for all the camMechs,
from which we can see that the average torque and the maximum
torque increase when the deviation angle α becomes larger. Hence,
we prefer a small deviation angle α < αthres = 45○ in our design, and
choose α = 0○ if conditions permit.

2 Kinematic Modeling

In the paper, we have formulated a general representation for the
kinematic equation of all the camMechs (i.e., Equation 3 in the
paper):

G( Tc(t) C(s), C(0) ) = 0 (1)

In the following, we provide a list of Equation 1 with concrete ex-
pression for each class of camMechs, where Tc(t) is a 4x4 rotation
matrix that represents the cam’s transformation, C(s) is the pitch
curve of the cam, ps and vs represent the position and orientation
of the follower-support joint respectively.

In camMech 1T:

∣∣ (Tc(t) C(s) − C(0)) × vs ∣∣ = 0 (2)

In camMech 1O:

∣∣ (Tc(t) C(s) − ps)∣∣ − ∣∣ (C(0) − ps)∣∣ = 0

( Tc(t) C(s) − ps) ⋅ vs = 0
(3)



In camMech 1R:

∣∣ (Tc(t) C(s) − ps)∣∣ − ∣∣ (C(0) − ps)∣∣ = 0

( Tc(t) C(s) − C(0)) ⋅ vs = 0
(4)

In camMech 2R:

∣∣ Tc(t) C(s) − ps∣∣ = ∣∣ C(0) − ps∣∣ (5)

In camMech 2T:

( Tc(t) C(s) − C(0)) ⋅ vs = 0 (6)

In camMech 1T1R:

∣∣ (Tc(t) C(s) − ps) × vs ∣∣ = ∣∣ (C(0) − ps) × vs ∣∣ (7)

3 Dynamic Modeling

We take camMech 2R as an example to illustrate how our dynamic
modeling approach (see Section 4.3 in the paper) computes a torque
τ c(t) required to drive the cam such that the cam can rotate uni-
formly while the follower can move with the known accelerations
(i.e., af(t) and αf(t)) under the workload Fe(t). For simplicity,
we omit time t in the below symbols.

Follower dynamics. Denote the follower’s weight and moment
of inertia as mf and If respectively. If is an anisotropy tensor.
Denote the acceleration of gravity as g. In summary, the follower
experiences the following forces that can drive its motion: gravity
Fg =mfg, workload Fe, and supporting force N; see Figure.8 in
paper. Based on Newton’s Second Law for translation and rotation
of the follower, we have

Ff( N; Fg, Fe ) =mfaf

Mf( N, pN ; Fg, Fe ) = Ifαf
(8)

where Fg , mf , and I are constants while all other variables are
functions with respect to time t. Note that only camMech 1T1R
requires to formulate both Ff and Mf while others only need to
formulate either one.

Particularly, Eq.8 in camMech 2R:

(pN − ps) ×N + (pg − ps) ×Fg + (pe − ps) ×Fe = Ifαf

At a given time t, the values of pg(t), pe(t), and αf(t) can be
obtained from the kinematic modeling.

Denote the velocity of the follower ball center pp(t) as vp(t), which
can be calculated in the kinematic modeling. The relative velocity
between the cam and the follower at point pp(t) is a known variable:
vr = ωc ×pp −vp, where ωc(t) is the cam’s angular velocity. Note
that the direction of vr is identical with the tangent of the pitch curve
at point pp(t). Due to the way that we model the groove surface
by sweeping the follower ball along the pitch curve, the supporting
force N should be perpendicular to vr:

N�vr (9)

The contact point pN is always on the follower ball surface and its
actual location determines the direction of the supporting force N:

(pp − pN)/R = N/∥N∥ (10)

where R is the radius of the follower ball. Based on Equations 8–10,
we can solve instantaneous N and pN at any time t.

3D cam dynamics. Denote the cam’s moment of inertia as Ic, which
is a scalar since the axis of rotation is fixed. Based on Newton’s
Second Law for rotation of the 3D cam, we have

Mc( τ c; N, pN ) = Icαc (11)

Gravity will not create any torque for the cam as we assume the cam
centroid locates at its rotation axis. τ c can be obtained by solving
Equation 11 as it is the only unknown variable in the equation.

Figure 3: Starting from (a) the same initial camMech, we use our optimization-based approach to design (b-d) three camMechs, each of which
represents the unknown function s(t) using a cubic spline with 5, 16, and 40 control points, respectively. From top to bottom: the initial and
optimized function s(t), where control points in(b-d) are colored in black; the corresponding camMech design, energy function value E, and
the optimization time Toptim; and the corresponding pitch curve.



4 Control points of s(t)
In Section 6.1 of the paper, we choose to represent the unknown
function s(t) as a cubic spline, and initialize it as s(t) = t. We
choose 10 to 30 control points according to the target curve’s shape
complexity. In the following, we present an experiment to show
that the range of 10 to 30 control points of s(t) is sufficient for our
optimization.

In this experiment, we used our approach in Section 6.1 of the paper
to design three camMech 2R for realizing a T-REX curve. When
designing these three camMechs, the function s(t) is represented
as a cubic spline with m control points, where m = 5,16, and 40
respectively; see Figure 3(b-d). All these three designs take the
same camMech with s(t) = t as an initialization of the optimization;
see Figure 3(a). During the optimization, we only search for the
control points of the spline curve s(t) while keeping the other design
parameters (i.e., distance L and angle θ) fixed.

Figure 3(top) shows the initial and optimized spline curves. Fig-
ure 3(middle) shows each resulting camMech design as well as its
energy function value E and the optimization time Toptim. When
the number of control points m is increased from 5 to 16, there is
a significant drop in the energy value (i.e., from 213.1 to 190.4).
However, when the number of control points m is further increased
from 16 to 40, the drop in the energy value is very small (from
190.4 to 189.8), at the cost of significantly more computational time
for solving the optimization (from 10.1 seconds to 44.7 seconds).
Hence, we choose 10 to 30 control points for the unknown function
s(t) since it allows to get a good enough optimization result with
reasonable computational cost.


