
Supplementary Material for
Exact 3D Path Generation via 3D Cam-Linkage Mechanisms

In this supplementary material, we first provide technical details
about topologies for our 3D cam-linkage mechanism. Next, we
provide equations of the input parametric curves/motions that are
used in the paper. Third, we present technical details about the
experiment of generating a 3D path with arbitrary shape. Lastly, we
show all the 20 input curves and corresponding mechanisms in the
experiment of generating 3D paths with varying shape complexity.

1 Topologies of Cam-Linkage Mechanism
Choosing 5-bar instead of 4-bar spatial linkage. In the followings,
we explain why we do not choose a 4-bar spatial linkage for our 3D
cam-linkage mechanism. Assume that we combine a 4-bar spatial
linkage and two 3D cams using the same method in Section 4 of the
paper. Then, we have the following equation according to Equation
1 in the paper:

f2 + f3 = 6 (1)

Since our link joints support at most 3 DOFs, both joints J2 and
J3 have to be a spherical joint. However, a bar with two spherical
joints at its ends will have 1-DOF uncontrollable motion (i.e., 1-DOF
rotation around the bar axis), making the linkage unable to output
arbitrary 3-DOF motion. Due to this reason, we choose a 5-bar
instead of a 4-bar spatial linkage for composing our 3D cam-linkage
mechanism.

128 topologies of our cam-linkage mechanism. In the paper, we
have introduced that there are 128 different topologies of the 3D
cam-linkage mechanism. Below, we show how we derive this total
number of topologies for the mechanism, i.e., the total number of
combinations of the five link joints.

The total number of combinations for the active joints J1 and J5 is
2×2 = 4 since J1 can be {C,U} while J5 can be {R,P}. The total
number of combinations for the passive joints J2, J3, and J4 that
satisfy Equation 2 in the paper can be classified into the following
two classes:

• Class 1: f2 = 2, f3 = 2, f4 = 2. The number of combinations
for this class is 2 × 2 × 2 = 8 since f2 can be {C,U}, f3 can be
{C,U}, and f4 can be {C,U}.

• Class 2: fa = 1, fb = 2, fc = 3. Let’s assume fa = f2, fb =
f3, and fc = f4. The number of combinations for this case is
2 × 2 × 1 = 4 since f2 can be {R,P}, f3 can be {C,U}, and f4
can be {S}. Moreover, we have 3! = 6 permutations of assigning
the number of DOFs (i.e., 1, 2, 3) to the three passive joints (i.e.,
J2, J3, and J4). Hence, the number of combinations for this class
is 4 × 6 = 24.

Thus, the total number of combinations for the passive joints is
8 + 24 = 32. Overall, the total number of combinations of the five
link joints is 4 × 32 = 128.

2 Equations of Input Parametric Curves
We used parametric curves as input space curves for designing 3D
cam-linkage mechanisms in the paper. We provide equations of
these parametric curves in Table 1.

We also provide the equation of the input motion for the generalized
mechanism in Figure 15 of the paper. Denote M(R,T) as a rigid

Table 1: Equations of input parametric curves.

transformation matrix with rotation R and translation T. We repre-
sent the rotation R with Euler angle {α,β, γ}, i.e., R = R(α,β, γ),
where
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We represent the translation T with a translation vector (x, y, z)T ,
where
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3 Generating a 3D path with Arbitrary Shape
We first explain how to choose the geometry of a 3-DOF 5-bar spatial
linkage such that the linkage’s output motion space has a continuous
and volumetric portion Φ that is singularity-free and collision-free.
Next, we explain how to model a continuous 3D curve with arbitrary
shape and a finite number of C0 points by moving a particle with
random acceleration in a fixed sphere.

Computing a 3-DOF spatial linkage’s motion space. Without loss
of generality, we assume two conditions for a given 3-DOF 5-bar
spatial linkage: 1) the Jacobian Matrix A of the linkage’s forward
kinematics is positive, i.e., σmin(A) ≥ µ; and 2) the initial state of
the spatial linkage is singularity-free and collision-free. We show
that there always exists a continuous and volumetric portion Φ that
is singularity-free and collision-free in the output motion space of a
linkage that satisfies the two conditions.

According to the kinematic modeling in the paper, the motion
transfer function f(⋅) of the 3-DOF linkage can be expressed as
B(t) = f([s1, s5]), where the active joint angles [s1, s5] represent
the input motion while the end-effector point position B(t) repre-
sents the output motion. Denote the input motion space as Ωin and
the output motion space as Ωout. For a certain point x ∈ Ωin, there
exists an open ball with radius r covering x, belonging to Ωin, i.e.
∃Ur(x) ⊂ Ωin. This statement is true since the input motion space
Ωin is the tensor product of the continuous space of each active joint
angle. Due to the continuity of the motion transfer function f(⋅)
and its inverse, there exists an open ball with radius R in the output
motion space Ωout that covers f(x), i.e., ∃UR(f(x)) ⊂ Ωout [Rudin
1991]. The radius R of the open ball in the output motion space
should be at least µr due to the positive Jacobian Matrix A, i.e.,
σmin(A) ≥ µ .

Since the initial state of the spatial linkage is singularity-free and
collision-free, we can choose the active joint angles of the initial
state as x ∈ Ωin, and compute the open ball UR(f(x)) ⊂ Ωout. It is
obvious that UR(f(x)) is a continuous and volumetric portion Φ
that is singularity-free and collision-free in the output motion space
Ωout of the linkage. To further increase the size of the portion Φ,
we can expand it by using many open balls in the output motion
space that are overlapped with one another without any gap. This is
achieved by densely sampling a number of points in the input motion
space Ωin, computing the corresponding open balls in the output
motion space, and choosing those open balls that are singularity-free
and collision-free and can expand the portion Φ while maintaining
its continuity.

Modeling a 3D curve with arbitrary shape. We model a 3D curve
with arbitrary shape by moving a particle randomly in a fixed sphere
with radius R. In detail, we initialize the position p0 of the particle
as the center of the sphere and initialize the velocity v0 of the particle
randomly. Next, we apply some random force Fr(t) on the particle,

where each component of the force vector is a randomly generated
number within a prescribed range. To avoid this particle to go out of
the sphere, we model an obstacle energy Eobst(d) = (ln(d/d1))2,
where d is the distance to the sphere and d1 = R/2. The obstacle
energy Eobst(d) is infinite at d = 0, and reduces to 0 at d = d1. To
avoid the particle to move too fast, we model a resistive force, i.e.,
Fv = −k∥v∥v, where k is a positive coefficient and set as 1 in our
experiment. Hence, the total force applied on the particle is:

F(t) = Fr(t) − δd<d1∇Eobst − k∥v∥v (6)

The particle’s acceleration at time t is a(t) = F(t)/m, where m
is the mass of the particle. The particle’s velocity v(t) = v0 +
∫

t

0 a(t1)dt1 is a continues function. And the particle’s position
p(t) = p0+∫

t

0 v(t1)dt1 forms aC1 curve. To introduce aC0 point
in the C1 curve at time t, we replace the particle’s velocity v(t)
calculated from the integration with a randomly generated velocity
vector that has a different direction from v(t). We introduce a
finite number of C0 points in the C1 curve by applying the velocity
modification operation multiple times.

4 Generating 3D Paths with Varying Shape
Complexity

In Figure 1, we show all the 20 input 3D curves with increasing shape
complexity as well as the corresponding path generation mechanisms
designed by our approach.

All the 20 input curves {Rk}, 1 ≤ k ≤ 20 are continuous and closed
with increasing shape complexity, where Length(Rk+1) = 1.1 ⋅
Length(Rk) and Rk has k − 1 C0 points. To generate each closed
input curve Rk, we first use the particle-based method mentioned
above to generate an open curve with k−1 C0 points and then make
the curve closed (without introducing new C0 points) by connecting
the starting point and ending point using a Hermite curve.
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Figure 1: Our mechanisms for generating input 3D curves with increasing shape complexity, where the curve index k is indicated by the
number beside each curve.


