
Computational Design of High-level Interlocking Puzzles

RULIN CHEN, Singapore University of Technology and Design, Singapore

ZIQI WANG, EPFL, Switzerland and ETH Zürich, Switzerland

PENG SONG, Singapore University of Technology and Design, Singapore

BERND BICKEL, IST, Austria

Fig. 1. A 4-piece level-6 interlocking puzzle designed by our approach that requires 6 moves to take out the first piece (in blue color). Each sub-figure shows a

configuration of the puzzle pieces in the disassembly plan, where arrows indicate the translational direction to move (in black) or remove (in red) a subassembly

to reach the next configuration. Note that the two black arrows in the top right subfigure indicate a single move of a subassembly with two parts.

Interlocking puzzles are intriguing geometric games where the puzzle pieces

are held together based on their geometric arrangement, preventing the

puzzle from falling apart. High-level-of-difficulty, or simply high-level, inter-
locking puzzles are a subclass of interlocking puzzles that require multiple

moves to take out the first subassembly from the puzzle. Solving a high-level

interlocking puzzle is a challenging task since one has to explore many

different configurations of the puzzle pieces until reaching a configuration

where the first subassembly can be taken out. Designing a high-level inter-

locking puzzle with a user-specified level of difficulty is even harder since

the puzzle pieces have to be interlocking in all the configurations before the

first subassembly is taken out.

In this paper, we present a computational approach to design high-level

interlocking puzzles. The core idea is to represent all possible configurations

of an interlocking puzzle as well as transitions among these configurations

using a rooted, undirected graph called a disassembly graph and leverage this
graph to find a disassembly plan that requires a minimal number of moves

Authors’ addresses: Rulin Chen, Singapore University of Technology and Design, Sin-

gapore, rulin_chen@mymail.sutd.edu.sg; Ziqi Wang, EPFL, Switzerland and , ETH

Zürich, Switzerland, ziqi.wang@inf.ethz.ch; Peng Song, Singapore University of Tech-

nology and Design, Singapore, peng_song@sutd.edu.sg; Bernd Bickel, IST, Austria,

bernd.bickel@ist.ac.at.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0730-0301/2022/07-ART150 $15.00

https://doi.org/10.1145/3528223.3530071

to take out the first subassembly from the puzzle. At the design stage, our

algorithm iteratively constructs the geometry of each puzzle piece to expand

the disassembly graph incrementally, aiming to achieve a user-specified

level of difficulty. We show that our approach allows efficient generation

of high-level interlocking puzzles of various shape complexities, including

new solutions not attainable by state-of-the-art approaches.

CCS Concepts: • Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: interlocking puzzle, level of difficulty,

disassembly planning, computational design

ACM Reference Format:
Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel. 2022. Computational

Design of High-level Interlocking Puzzles. ACM Trans. Graph. 41, 4, Arti-
cle 150 (July 2022), 15 pages. https://doi.org/10.1145/3528223.3530071

1 INTRODUCTION

Interlocking puzzles are a specific class of 3D geometric puzzles [Cof-

fin 2006], where puzzle pieces interlockwith one another, preventing

the 3D assembly from falling apart. The aim of the puzzle game

is to put together all the puzzle pieces to form a meaningful 3D

shape or to disassemble a complete puzzle into individual puzzle

pieces. Motivated by their recreational value and geometric beauty,

a number of computational approaches have been developed by the

graphics community for designing interlocking puzzles [Song et al.

2012; Wang et al. 2018; Xin et al. 2011].

Many existing interlocking puzzles, including those designed by

the above computational approaches, can be disassembled by repeat-

ing the process of identifying a movable puzzle piece and taking it

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530071
https://doi.org/10.1145/3528223.3530071

150:2 • Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel

Fig. 2. Comparing a level-1 interlocking puzzle (top) and a level-5 interlocking puzzle (bottom). (Top) The puzzle requires one move to take out the first piece

(P1); each of the remaining puzzle pieces requires two moves to be taken out. (Bottom) The puzzle requires five moves to take out the first piece (P1), where
the 2nd move translates two puzzle pieces (P4 and P5) together; after taking out P1, each of the remaining puzzle pieces can be taken out easily.

out directly; see Figure 2 (top) for an example. In other words, these

interlocking puzzles assume a monotone and linear disassembly

plan. In a monotone disassembly plan, there is no need for inter-

mediate placements of puzzle pieces for solving the disassembly

problem while in a linear disassembly plan, each disassembly oper-

ation involves moving a single puzzle piece relative to the rest of

the assembly [Ghandi and Masehian 2015].

To make the disassembly process (i.e., the puzzle game) more

intricate and thus more intriguing, we are interested in studying

interlocking puzzles that require non-monotone and possibly non-
linear disassembly plans for solving the puzzle in this paper; see

Figure 2 (bottom) for an example. To disassemble these puzzles,

one needs to try different combinations of moves of the puzzle

pieces in order to reach a puzzle configuration (see Figure 2(l))

where the first subassembly can be taken out directly. The level of
difficulty of these interlocking puzzles are generally assessed by the

number of moves required to remove the first subassembly from the

puzzle [Coffin 2006]. This is because taking out the first subassembly

is the most intriguing part of disassembling interlocking puzzles.

Once the first subassembly has been removed, the remaining puzzle

can usually be easily disassembled; see Figure 2 (bottom). Puzzles

requiring a large number of moves to take out the first subassembly

are called high-level-of-difficulty interlocking puzzles or simply high-
level interlocking puzzles.
Solving a high-level interlocking puzzle is a challenging task

since one has to find a non-monotone and linear/non-linear plan

to disassemble the puzzle, which is known to be an NP-hard prob-

lem [Kavraki et al. 1993]. Designing a high-level interlocking puzzle

with a user-specified level of difficulty is even more challenging.

Besides the difficulty of finding a disassembly plan to ensure that

the puzzle has the user-specified level of difficulty, one needs to

design the puzzle pieces in a way that they have to be interlocking

in all the configurations before the first subassembly is taken out.

Due to these challenges, there are not many known high-level inter-

locking puzzles, and existing ones are mainly limited to holey burr

puzzles [Cutler 1988] and cube-shaped puzzles [Gontier 2020].

In this paper, we develop a computational approach for designing

new high-level interlocking puzzles according to user specifications,

including the puzzle shape, number of puzzle pieces, and level of

difficulty. To make the problem tractable, we assume that the puzzle

shape is represented as a voxelized model, and disassembly motion

is limited to translation along each of the major axes. Our core idea

to address the problem is to encode all possible configurations of a

given puzzle using a rooted graph data structure, where the level

of difficulty corresponds to the length of a shortest path from the

root node (i.e., assembled puzzle configuration) to a target node (i.e.,

configuration where a single subassembly is removed) in the graph.

At the design stage, we iteratively construct each puzzle piece to

expand the graph data structure incrementally such that potential

target nodes can be as far from the root node as possible, aiming to

increase the level of difficulty.

Contributions. Specifically, we make the following contributions:

• We propose a graph-based disassembly planner to compute the

exact level of difficulty of an interlocking puzzle, defined by a non-
monotone and linear/non-linear disassembly plan that requires a

minimal number of moves to take out the first subassembly.

• We present a computational framework for constructing the ge-

ometry of each voxelized puzzle piece iteratively, guided by the

graph-based disassembly planner, to achieve the user-specified

level of difficulty.

• We formulate and solve a shape optimization problem to deform

an input shape slightly such that we can generate high-level

interlocking puzzles with smooth appearance and structurally

sound pieces.

Thanks to our shape optimization, our approach is able to design

puzzles with both voxelized and smooth appearance. We demon-

strate the effectiveness of our computational approach on a variety

of shapes, compare it with a state-of-the-art approach [Gontier

2020], and fabricate some of our designed puzzles to validate their

level of difficulty; see Figure 1 for an example. Code and data of this

paper are at https://github.com/Linsanity81/High-LevelPuzzle.

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

https://github.com/Linsanity81/High-LevelPuzzle

Computational Design of High-level Interlocking Puzzles • 150:3

2 RELATED WORK

Puzzle design. Motivated by recent advances in digital fabrication,

the graphics community has raised a great interest in research on

computational design for stylized fabrication [Bickel et al. 2018].

Among this line of research, a number of computational methods

and tools have been developed for personalized design and fabri-

cation of various kinds of geometric puzzles, including 3D jigsaw

puzzles [Elber and Kim 2022], polyomino puzzles [Kita and Miy-

ata 2020; Lo et al. 2009], dissection puzzles [Duncan et al. 2017; Li

et al. 2018; Tang et al. 2019; Zhou and Wang 2012], interlocking

puzzles [Song et al. 2012; Xin et al. 2011], centrifugal puzzles [Kita

and Saito 2020], and twisty puzzles that generalize the Rubik’s cube

mechanism [Sun and Zheng 2015].

Interlocking assemblies. In an interlocking assembly, there is only

one movable part called the key, while all other parts, as well as any
subset of the parts, are immobilized relative to one another [Song

et al. 2012]. A number of computational methods have been devel-

oped to construct interlocking assemblies for different applications,

including puzzles [Song et al. 2012; Xin et al. 2011], 3D printed

objects [Song et al. 2016, 2015; Yao et al. 2017], furniture [Fu et al.

2015; Song et al. 2017], architecture [Wang et al. 2019], and robotic

assembly [Zhang and Balkcom 2016; Zhang et al. 2021]. In particular,

Wang et al. [2018] developed a unified framework to design inter-

locking assemblies of different forms by leveraging a graph-based

representation.

The main objective of the above works is to make the assembly

structurally stable based on interlocking of component parts. Since

the parts are preferred to be easily assembled to form the final struc-

ture, all these works assume a monotone and linear (dis)assembly

plan. Due to this reason, the resulting interlocking assemblies typi-

cally have a level 1 difficulty; i.e., the key can be taken out directly

with one move. In this paper, we focus on high-level interlocking

assemblies. Different from level-1 interlocking assemblies that are

interlocking only at the final configuration, high-level interlocking

assemblies have to be “interlocking” (i.e., no removable subassembly)

in all the configurations before the first subassembly is removed.

High-level interlocking puzzles. Designing high-level interlock-

ing puzzles is much more difficult than designing the above level-1

interlocking assemblies, due to the coupling of two complex sub-

problems: disassembly planning and geometric design. The design of

a new high-level interlocking puzzle is extremely hard for humans,

even for skilled professionals, which perhaps explains why there

are not many known high-level interlocking puzzles [Coffin 2006].

Cutler [1988] proposed to use computers to exhaustively try and

discover six-piece interlocking holey burr puzzles. He performed

a complete analysis of 13,354,991 essentially different puzzle as-

semblies, among which the highest level found was level-10. Other

than exhaustive search, some 3D puzzle designers took a trial-and-

error approach by using computer software such as BurrTools by

Röver [2013] as a puzzle solver to test if their puzzle designs can be

assembled as well as to compute their level of difficulty. Recently,

Gontier [2020] developed a genetic algorithm to search for high-level

interlocking cubes on supercomputers, and reported four results of

interlocking cubes with level 5, 9, 10, and 13, respectively.

The above approaches compute the level of difficulty of a given

interlocking puzzle based on a feasible disassembly plan found by a

specific disassembly planner such as BurrTools [2013]. In contrast,

we define the level of difficulty in a more strict way as the minimal
number of moves to take out the first subassembly, which is intrinsic

to the puzzle. Moreover, we develop a new graph-based disassembly

planner that is able to compute this intrinsic level of difficulty and

a computational framework that can construct the geometry of

puzzle pieces to achieve the level of difficulty. Due to this reason,

our approach can create high-level interlocking puzzles much more

efficiently and flexibly, and generate results that cannot be achieved

by the state-of-the-art approaches; see Section 7 for a quantitative

comparison with [Gontier 2020].

Assembly planning. The goal of assembly planning is to find a

sequence of operations to assemble the parts (i.e., assembly sequenc-
ing [Jiménez 2013]), and determine the motions that insert each part

into the assembly (i.e., assembly path planning [Ghandi and Mase-

hian 2015]). A bijection usually exists between assembly planning

and disassembly planning [Halperin et al. 2000]. Hence, a common

strategy to assembly planning is assembly-by-disassembly, where

an assembly plan is obtained by computing a disassembly plan and

then reversing its order and path.

To address the assembly sequencing problem, a number of data

structures have been proposed to enumerate all possible assembly se-

quences, including Bourjault tree [Bourjault 1984], directed graph of

assembly states [Fazio andWhitney 1987], and And/Or graph [Mello

and Sanderson 1990]; readers are referred to the surveys [Jiménez

2013; Wolter 1991] for more details. All these data structures assume

monotone assembly plans and cannot represent assembly states

with intermediate placements of component parts. We address this

issue by proposing a new graph data structure augmented with

spatial information of the assembly such that it can enumerate all

non-monotone assembly plans for high-level interlocking puzzles.

In the literature, there are very few works that deal with non-

monotone assembly planning as pointed out in [Masehian and

Ghandi 2020]. Tsao andWolter [1993] proposed amethod to generate

a feasible non-monotone and non-linear assembly plan by assuming

that intermediate states are given as input. Le et al. [2009] searched

for a feasible non-monotone and linear disassembly plan by extend-

ing a sampling-based path planner. Masehian and Ghandi [2020]

proposed a planner/replanner for monotone and non-monotone

assembly planning, with advantages of supporting obstacles in the

workspace and allowing translational and rotational movements of

paths. Later, this approach was extended to support non-monotone

assembly planning with both rigid and flexible parts [Masehian

and Ghandi 2021]. All these existing approaches aim to find a fea-

sible non-monotone (dis)assembly plan, making them inapplicable

to our problem of finding an optimal non-monotone disassembly

plan that requires a minimal number of moves to take out the first

subassembly.

In the graphics community, (dis)assembly planning is typically for-

mulated as an optimization problem to find a desired (dis)assembly

plan that maximizes certain objectives. For example, the objec-

tive can be visibility of parts for creating visual assembly instruc-

tions [Agrawala et al. 2003], stability of incomplete assemblies for

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

150:4 • Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel

Fig. 3. Our approach takes (a) a voxelized shape as an input and partitions

it to generate (b) a 6-piece level-6 interlocking puzzle (see its disassembly

plan in Figure 4). The geometry of each voxelized puzzle piece can be further

processed to obtain (c) a puzzle with smooth appearance.

illustration [Guo et al. 2013; Kerbl et al. 2015] and physical construc-

tion [Deuss et al. 2014]. Please refer to the survey [Wang et al. 2021]

for details.

Assembly-aware design. Assembly-aware design varies the geom-

etry of assemblies to enable desirable (dis)assembly plans, aiming

for simplifying the physical (dis)assembly process. Desai et al. [2018]

designed electromechanical devices that require only translational

motion for parts assembly while Kao et al. [2017] designed ma-

sonry shell structures that require significantly fewer supports for

physical construction. Our design of high-level interlocking puzzles

follows the spirit of this design paradigm. However, rather than

simplifying the (dis)assembly process, our goal is to complicate the

(dis)assembly process of puzzles such that finding a (dis)assembly

plan of the puzzles becomes an intriguing gaming process.

3 PROBLEM FORMULATION

Our input is a voxelized shape; see Figure 3(a). Users should also

specify a target number of puzzle pieces K and a desirable level of

difficulty L, where L > 1 since we focus on high-level interlocking

puzzles. Our goal is to generate aK-piece level-L interlocking puzzle
by partitioning the input voxelized shape into K puzzle pieces; see

Figure 3(b). In case users prefer a puzzle with smooth appearance,

we allow post-processing on the geometry of each voxelized puz-

zle piece to refine its appearance while preserving its structural

soundness; see Figure 3(c).

Level of difficulty. Following the definition in [IBMResearch 1997],

we define the level of difficulty as follows:

The level of an interlocking puzzle is the number of

moves needed to remove the first piece or pieces, where

a move is counted as one irregardless of how far a piece

is moved in one direction.

Since we assume translational-only motion for disassembly, moving

a piece is equivalent to translating a piece in our paper. Moving a

piece in one direction and then immediately in another is considered

as two moves; see Figure 2(b&c). The move to remove the piece is

counted for the level also. Moving two or more pieces in the same

direction simultaneously is counted as one move; see Figure 2(i).

Given an interlocking puzzle, there may exist different ways to take

out the first subassembly. We call these partial disassembly plans

kernel disassembly plans and denote them as {Di }. For each kernel

disassembly plan Di , we denote the number of moves to take out

the first subassembly as N (Di). We define the interlocking puzzle’s

exact level of difficulty as

Lexact = min

i
N (Di) (1)

Note that our definition of level of difficulty is unique and intrinsic to

the puzzle, compared with the level computed by existing tools like

Burr Tools [Röver 2013] that depends on the employed disassembly

planner.

Design requirements. Given the user input, our designed puzzles

should satisfy the following requirements:

(1) Fabricability. Each generated puzzle piece should be a single

piece of connected geometry
1
that can be fabricated.

(2) Puzzle piece size. All the puzzle pieces should have similar sizes

(i.e., similar number of voxels) to avoid fragmented pieces.

(3) Level of difficulty L. There should exist at least one disassembly

plan that takes out the first subassembly with L moves. And

there should not exist any disassembly plan that takes out the

first subassembly with fewer than L moves.

(4) Disassemblability. The puzzle can be completely disassembled

into individual puzzle pieces.

In case the input voxelized shape is convex, we can only generate

level-1 interlocking puzzles since any movable puzzle piece can be

directly removed; see Figure 2(a). To resolve this issue, we allow

users to create small holes inside the convex shape by introducing

a few hole voxels; see Figure 2(h) for an example. The purpose of

these hole voxels is to enable intermediate moves (yet not removal)

of the puzzle pieces.

Overview of our approach. In Section 4, we propose a disassembly

planner that uses a rooted graph to represent all possible valid

configurations of the puzzle as well as transitions among these

configurations, until the first subassembly is taken out. To compute

the exact level of difficulty, our planner finds a path with the shortest

length from the initial puzzle state (i.e., root node) to any state where

a single subassembly has been taken out. We also extend our planner

to check whether a given puzzle can be disassembled into individual

pieces.

In Section 5, we propose a computational approach to design

high-level interlocking puzzles with voxelized shape. Our approach

consists of two key components: an iterative design framework that

ensures the generated puzzles satisfy the design requirements, and

an algorithm to construct the geometry of each puzzle piece guided

by the disassembly planer.

In Section 6, we introduce methods to extend our design approach

for generating high-level interlocking puzzles with smooth appear-

ance and structurally sound pieces. The idea is to formulate and

solve a shape optimization problem to ensure that a sufficiently

large subvolume of each voxel is covered by the optimized shape.

By this, we can generate puzzle pieces with smooth appearance by

simply performing CSG intersection between each voxelized puzzle

piece and the optimized shape.

1
A piece of connected geometry means that each voxel has at least one face-face contact

with its neighbours to ensure structural soundness of the puzzle piece.

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

Computational Design of High-level Interlocking Puzzles • 150:5

Fig. 4. Disassemble a 6-piece level-6 puzzle using a non-monotone and non-linear plan. The kernel disassembly plan is shown in (a-g) while the complete

disassembly plan is shown in (a-n). In (g-h), we show disassembled puzzle pieces on top of the puzzle and adjust their positions to avoid overlap.

4 DISASSEMBLY PLANNER

The purpose of our disassembly planner is twofold. First, it should be

able to compute the exact level of difficulty for a given interlocking

puzzle (Section 4.2). Second, it should be able to identify if the puzzle

can be disassembled into individual pieces (Section 4.3). To facilitate

understanding of our approach, we first define a set of relevant

concepts in Section 4.1.

4.1 Definitions

Given an interlocking puzzle P, we denote its pieces as {P1, ..., PK },
K ≥ 3, where K is the number of pieces in the puzzle. We assume

that each puzzle piece is represented as a polycube, and the whole

puzzle forms a voxelized shape.

To disassemble the puzzle, we assume that each puzzle piece

can only translate along one of the three major axes following a

certain order. Denote the side length of a voxel as µ. We call that

a translation of a puzzle piece along one major axis for a distance

d = h · µ as a translation of h steps, where h ≥ 1 and h ∈ Z. We only

consider these discrete translations for disassembling the puzzle

pieces, due to the discrete nature of the voxelized shape.

State. A state for a puzzle piece Pi is defined as either the piece’s

initial position or other positions induced by a set of operations.

We represent a puzzle piece Pi ’s state si using the displacement

from its initial position. Hence, the initial state of each Pi is always
si = (0, 0, 0); see Figure 4(a). The state si consists of integers only
due to the discrete nature of the voxelized shape. For example, the

state of P1 in Figure 4(b) is (1, 0, 0) since it translates along+x for one

step from its initial state. We introduce the infinity state, denoted

as∞, to represent the state of a piece that is disassembled such as

P1 in Figure 4(g).

Operation. We define a disassembly operation for a puzzle piece

as a change of state by translating along one of the major axes for

one or multiple steps. That is, for each puzzle piece Pi , an operation

is denoted by four variables ol = (s
u
i , s

v
i ,dj ,h), where sui is the

source state that Pi moves from, svi the destination state that Pi
moves to, dj ∈ {−x,+x,−y,+y,−z,+z} is the moving direction of

Pi , and h is the number of moving steps. We classify disassembly

operations into the following two types, i.e. temporary operations

and removal operations. A temporary operation is defined as an

operation that moves a puzzle piece from a non-infinity state to

another non-infinity state (e.g., moving P1 along +x in Figure 4(e)

to reach the state in Figure 4(f)) whereas a removal operation moves

a puzzle piece from a non-infinity state to the infinity state (e.g.,

moving P1 along +y in Figure 4(f) to remove it).

Move. In order to support non-linear disassembly planning, we

define a movemi to be a non-empty set of collision-free operations

where the associated puzzle pieces are moved simultaneously along

the same direction for the same distance; see the move of P3 and P4
along −x in Figure 4(c). Obviously, a move is just a generalization of

an operation from a single puzzle piece to a subset of puzzle pieces.

Here, we require that the subset of puzzle pieces have to contact

each other to form a connected piece of geometry. Such subset of

puzzle pieces is called a subassembly, denoted as Sj . Each single

puzzle piece is considered as a special case of a subassembly.

Configuration. We define a puzzle configuration as a set of puzzle

pieces together with their states, i.e., C = {(P1, s1), ..., (PK , sK)}. A
configuration is valid if there is no overlap among the puzzle pieces

in the configuration (i.e., collision-free). According to the states of

the puzzle pieces, we classify a configuration C into three types:

(1) Full configuration. In a full configuration, the state si = ∞ for

none of the K puzzle pieces; see Figure 4(a-f).

(2) Partial configuration. In a partial configuration, the state si = ∞
for k puzzle pieces, where 1 ≤ k ≤ K − 2, meaning that k puzzle

pieces have been disassembled; see Figure 4(g-m);

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

150:6 • Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel

Algorithm 1 Algorithm to build a kernel disassembly graph G for

a given interlocking puzzle P.

1: function BuildKernelDisassemblyGraph(P)

2: G = (V , E) ← ∅

3: let C1 be the initial puzzle configuration

4: mark C1 as the root node

5: V .push_back(C1)

6: let Q be queue

7: Q .enqueue(C1)

8: mark C1 as unvisited

9: while Q is not empty do
10: C = Q .dequeue()
11: if C has been visited then
12: continue

13: if C is not a full configuration then
14: mark C as a target node

15: else
16: C

neighbor
= ComputeNeighborConfigs(C)

17: for each Ck in the list C
neighbor

do
18: if Ck ∈ V then
19: if (C,Ck) < E then
20: E.push_back((C,Ck))

21: else
22: V .push_back(Ck)

23: E.push_back((C,Ck))
24: mark Ck as unvisited

25: Q .enqueue(Ck)

26: mark C as visited

return G

(3) Final configuration. In a final configuration, the state si = ∞ for

at least K − 1 puzzle pieces; i.e., the puzzle has been completely

disassembled into individual puzzle pieces; see Figure 4(n);

Kernel disassembly plan. We define a kernel disassembly plan

D
kern

=< m1,m2, ...,ml > as an ordered sequence of moves to

take out the first subassembly, where l is the number of moves in

D
kern

; see Figure 4(a-g). This kernel disassembly plan can also be

represented as a set of configurations of the puzzle, i.e., D
kern
=<

C1,C2, ...,Cl+1 >, where C1 is the initial puzzle configuration and

Cj+1 is the configuration obtained by applying movemj onto the

configuration Cj . We require that each Cj , where 1 ≤ j ≤ l , is a full
configuration while Cl+1 is a partial configuration with exactly one

removed subassembly.

Complete disassembly plan. We define a complete disassembly

plan Dcomp =< m1,m2, ...,ml , ...,mq > as an ordered sequence of

moves to disassemble the puzzle into individual pieces, where q is

the number of moves in Dcomp; see Figure 4. Similarly, the complete

disassembly plan can be represented as a set of configurations of

the puzzle, i.e., Dcomp =< C1,C2, ...,Cl+1, ...,Cq+1 >, where Cq+1
is the final configuration. From the definition, we can see that there

exists l < q such that the first l moves in a complete disassembly

plan form a kernel disassembly plan.

Fig. 5. The kernel disassembly graph of a 4-piece level-4 interlocking puzzle.

The graph has three target nodes, and the exact level (i.e., 4) of the puzzle is

defined by the shortest path from the root node to the target node 1 or 2

(the path is colored in orange or cyan respectively).

4.2 Computing Level of Difficulty

To compute the level of difficulty, we have to enumerate all possible

kernel disassembly plans to take out the first subassembly; see Equa-

tion 1. However, directly enumerating all these plans has significant

redundancy in computation since many plans share the same config-

urations with different orders. To avoid the ordering problem [Wu

et al. 2019], our idea is to enumerate all the valid configurations of

the puzzle as well as valid transitions among these configurations

instead. To this end, we propose a rooted graph data structure called

kernel disassembly graph to encode all possible kernel disassembly

plans, in which each node represents a puzzle configuration and

each edge represents a move of a subassembly. A kernel disassembly

graph is an undirected graph since a move is bidirectional according

to its definition; see Figure 5 for a simple example.

In a kernel disassembly graph, the root node is the initial puzzle

configuration C1, and nodes with one subassembly removed are

called target nodes. All the nodes except the target nodes in the

graph are full configurations. A kernel disassembly plan is a path

from the root node to one target node in the graph, where the length

of the path is the number of moves to take out the first subassembly.

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

Computational Design of High-level Interlocking Puzzles • 150:7

Algorithm 2 Algorithm to compute all possible configurations that

can be achieved by performing one move on a configuration C .

1: function ComputeNeighborConfigs(C)
2: vector Cnext ← ∅

3: for each subassembly S with ≤ ⌈K/2⌉ pieces in C do
4: for each major axis d ∈ {−x,+x,−y,+y,−z. + z} do
5: if S is movable along d then
6: Compute the max. number of movable steps L
7: if L = ∞ then
8: Ck ← C
9: Remove S in Ck
10: Cnext.append(Ck)

11: continue

12: else
13: for 1 ≤ i ≤ L do
14: Ck ← C
15: Move S along d for i steps in Ck
16: Cnext.append(Ck)

17: i + +
return Cnext

To compute the exact level of difficulty, we simply need to compute

a shortest path from the root node to each target node, choose a path

with the shortest length among all the shortest paths, and count the

number of edges in the path; see again Figure 5.

To build the kernel disassembly graph, we propose an algorithm

based on breadth-first search; see Algorithm 1. Starting from the

root node, this algorithm builds the graph by iteratively inserting

new nodes (i.e., neighboring nodes) that can be reached by a single

move from a current node in the graph. To compute these neigh-

boring nodes, we identify all possible movable subassemblies in the

current node C as well as their moving directions, and compute the

longest movable distance along each direction for each subassembly.

Due to the relativity of motion, we only need to perform this mobil-

ity computation for subassemblies with less than or equal to ⌈K/2⌉
pieces. Each neighbor of the node C is computed by applying a pos-

sible move to the configuration C; see Algorithm 2. A subassembly

is removable in the configuration C if its longest movable distance

is infinity. Applying this move to the configuration C will lead to a

target node in the graph. This graph expanding process terminates

when no new node or edge can be inserted in the graph.

4.3 Disassembly Planning

A given puzzle is possible to be not disassemblable, which can be

classified into three cases: 1) the whole puzzle is deadlocking; 2) the

puzzle is deadlocking after taking out a few puzzle pieces; and 3)

at least one removed subassembly is deadlocking; see Figure 6 for

examples. Algorithm 1 can only identify the first case of deadlocking

(i.e., no target node in the graph) but not the other two cases. Hence,

we need to extend the algorithm to check if a given puzzle can be

disassembled into individual puzzle pieces, which is known to be

an NP-hard problem [Kavraki et al. 1993].

To speed up the planning process, our algorithm aims to find

a feasible (i.e., collision-free) complete disassembly plan instead

Algorithm 3 Algorithm to generate a complete disassembly plan

Dcomp for a given puzzle P.

1: function DisassemblePuzzle(P, Dcomp)

2: if P consists of a single piece then
3: return true

4: { D
kern

, Sremv, Prema } = RemvSubassembly(P)

5: if D
kern

!= NULL then
6: Dcomp.append(D

kern
)

7: DisassemblePuzzle(Sremv, Dcomp)

8: DisassemblePuzzle(Prema, Dcomp)

9: else if P has more than one piece then
10: return false

return true

of enumerating all possible complete disassembly plans; see Algo-

rithm 3. Hence, our algorithm cannot guarantee that the puzzle is

not disassemblable if it does not find a complete disassembly plan.

In detail, we first modify Algorithm 1 to find a feasible kernel dis-

assembly plan that removes a single subassembly from a puzzle P
by terminating the graph expanding process once it finds a target

node; see RemvSusbassembly(P) in Algorithm 3. Our disassembly

planning algorithm calls this function recursively for both the re-

moved subassembly Sremv and the remaining puzzle Prema. This

recursion terminates when Prema and each Sremv consist of a single

puzzle piece respectively (i.e., P is disassemblable) or when there is

no subassembly that can be taken out from Prema or Sremv (i.e., P is

not disassemblable).

Besides the first removed subassembly, it may also require multi-

ple moves to take out some of the subsequent subassemblies. For

example, in Figure 4, it takes 6 moves to take out the firstly removed

piece P1 and 3 moves to take out the secondly removed piece P5. An
alternative way tomeasure an interlocking puzzle’s level of difficulty

is to use the total number of moves to completely disassemble the

puzzle into individual pieces, denoted as L
total

. However, since our

disassembly planner can only find a feasible complete disassembly

plan due to the huge search space, our computed L
total

cannot be

guaranteed to be the smallest total number of moves to disassemble

the puzzle.

Fig. 6. Three cases of deadlocking puzzles. From left to right, the whole puz-

zle, the puzzle after removing the green piece, and the removed subassembly,

are deadlocking.

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

150:8 • Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel

Fig. 7. Overview of our design approach. (a) Taking a voxelized shape as an input, (b-f) we generate the geometry of each puzzle piece iteratively by partitioning

the shape, during which we build (bottom) a kernel disassembly graph for (top) each intermediate puzzle. To increase the level of difficulty, we require that

(b-e) each intermediate puzzle should not have any removable subassembly and (f) only the resulting puzzle is disassemblable when the last two puzzle pieces

P5 and P6 are constructed. The shortest path in the graph to take out the first subassembly (i.e., P1) is colored in blue.

5 PUZZLE DESIGN APPROACH

To address the puzzle design problem formulated in Section 3, a

straightforward approach would be a trial-and-error approach that

iterates between randomly assigning piece IDs (from 1 to N) to each

voxel in the input shape and checking whether the resulting puzzle

satisfies the requirements in Section 3. However, this approach is

very inefficient and hard to generate a desirable result since each

puzzle piece can be easily disconnected and the puzzle can be easily

non-interlocking or non-disassemblable, especially when the input

shape has a large number of voxels; see Section 7 for the complexity

analysis of our puzzle design problem.

In this section, we propose a computational approach to design a

K-piece level-L interlocking puzzle by constructing the geometry

of each puzzle piece iteratively; see Figure 7. Section 5.1 introduces

our computational framework as well as a set of requirements on

constructing each puzzle piece. Section 5.2 presents an algorithm

that constructs the geometry of each puzzle piece to satisfy the

requirements in Section 5.1.

5.1 Computational Framework

Given the input voxelized shape denoted as R0, we iteratively con-

struct the geometry of each puzzle piece one by one; see Figure 7

for an example. This forms a sequence of constructed puzzle pieces,

P1, P2, ..., PK−1, PK :

[R0] → [P1,R1] → [P1, P2,R2] → ...→ [P1, ...PK−1,RK−1]

where Ri , 1 ≤ i ≤ K − 1, is the remaining part of the shape and

RK−1 = PK is the last puzzle piece. Here we denote each interme-

diate assembly [P1, ..., Pi ,Ri] as Ai (0 ≤ i ≤ K − 1), and its kernel

disassembly graph as G(Ai).

To design a high-level interlocking puzzle, our idea is that the

construction of each puzzle piece has to increase or at least preserve

the potential level of difficulty for the resulting puzzle. To this

end, we require that there is no removable subassembly in any

of the intermediate puzzles Ai , 1 ≤ i ≤ K − 2; see Figure 7(b-

e). In other words, each node in each kernel disassembly graph

G(Ai), 1 ≤ i ≤ K − 2, should be a full puzzle configuration. And

only the resulting puzzle P = AK−1 is disassemblable after we

construct the last two puzzle pieces by decomposing RK−2 into

PK−1 and PK ; see Figure 7(f). Otherwise, the level of difficulty of

the resulting puzzle will be the same as or smaller than that of the

first intermediate assembly Ai with removable subassemblies, no

matter how we construct the geometry for the subsequent puzzle

pieces. To increase the level of difficulty, we further require that

each kernel disassembly graph G(Ai) should have as many nodes

as possible, especially those far away from the root node.

To implement the above idea, we propose the following require-

ments when decomposing Ri−1 into Pi and Ri , where 1 ≤ i ≤ K − 1:

(i) Connected geometry. The geometry of Pi and Ri should be

connected respectively, making them fabricable.

(ii) Puzzle piece size. The number of voxels of Pi should be within
the range [(1− δ)⌊M/K⌋, (1+ δ)⌊M/K⌋], whereM is the total

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

Computational Design of High-level Interlocking Puzzles • 150:9

Fig. 8. Constructing the first puzzle piece P1. (a&b) Candidates of seed
voxels (marked as S) for d1 = +x and d1 = −x respectively, where there

should exist voxels (marked as T) that stop P1’s movement along d1. (c)
Choose a seed voxel for the first puzzle piece and (d&e) incrementally expand

the piece by adding voxels (marked as E) one by one.

number of voxels in the input shape R0 and δ ∈ [0, 1] is a user
specified parameter.

(iii) Movable puzzle piece. Pi should be movable in a configuration

that is furthest away from the root configuration inG(Ai−1),

aiming to extend the graph in a depth-first manner.

(iv) No removable subassembly in Ai , 1 ≤ i ≤ K − 2. There is no
removable subassembly in each intermediate puzzle Ai after

constructing Pi , where 1 ≤ i ≤ K − 2.

(v) Disassemblable puzzle AK−1. The resulting puzzle AK−1 be-

comes disassemblable after constructing PK−1.

Our computational framework guarantees that the resulting puz-

zle AK−1 satisfies the fabricability, puzzle piece size, and disassem-

blability requirements in Section 3. Moreover, our framework aims

to generate an interlocking puzzle with an as-high-as-possible level

of difficulty, although it does not have exact control over the level

of difficulty of the resulting puzzle. To this end, we allow some

modification operations on the resulting puzzle to satisfy the level

of difficulty requirement in Section 3.

5.2 Puzzle Piece Construction

We propose an approach to construct each puzzle piece Pi , 1 ≤ i ≤
K − 1, to satisfy the requirements in Section 5.1. We first present our

approach to construct the first piece P1 and then the other pieces

Pi , 2 ≤ i ≤ K − 1. Lastly, we introduce the modification operations

on the pieces {Pi } to achieve the user-specified level of difficulty L.

Constructing P1. Constructing the first puzzle piece P1 is relatively
simple since the kernel disassembly graph G(A0) only has a single

node, which is the input shape R0. According to the requirements

in Section 5.1, P1 should be movable but not removable in the input

shape R0. Moreover, P1 should be movable along a single direction

denoted as d1 in R0, aiming to make the resulting puzzle more stable.

We construct P1 with the following steps:

i) Pick the moving direction d1. We first identify the set of non-

height-field directions for the input shape R0; e.g., the set should
be {+x,−x} for the input shape in Figure 7. We randomly choose

one direction in the set as P1’s moving direction d1. Height-field

Fig. 9. (Top) Construct P2 in the configurationCprim in Figure 7(b). (Bottom)

Construct P5 in the configurationCprim in Figure 7(e). (a&d) Select a moving

direction di and a seed voxel S . (b&e) Select a pair of blockee and blocking

voxels (marked as Be and Bi respectively) and connect the seed voxel S
with the blockee voxel Be using a shortest path (voxels on the path are

marked as P). (c&f) Expand the puzzle piece.

directions cannot be selected since they will make P1 removable

along the direction.

ii) Pick a seed voxel. For a selected moving direction d1, a seed

voxel should not contact any voxel along d1, to ensure mobility

of P1 along d1. To ensure that P1 is not removable along d1, there
should exist some voxels that stop the movement of P1 along d1.
We identify all voxels satisfy the two conditions; see Figure 8(a&b)

for examples. We randomly choose one voxel from the set as a seed

voxel; see Figure 8(c).

iii) Ensure blocking. If the seed voxel is also movable along a

direction that is not d1, we prevent such motion by identifying a

pair of blocking and blockee voxels and connecting the seed voxel

with the blockee voxel using a shortest path [Song et al. 2012].

iv) Expand P1. Since P1 usually has a few voxels at this moment,

the goal of this step is to augment it with more voxels to balance

the size of the puzzle piece. To this end, we add voxels one by one

to P1, without violating the mobility and blocking conditions that

have been satisfied; see Figure 8(d&e).

Constructing Pi , 2 ≤ i ≤ K − 1. Constructing the subsequent

puzzle piece Pi is more complex since it has to satisfy the require-

ments for all the configurations in G(Ai−1). To increase the level

of difficulty, we identify configurations in G(Ai−1) that are furthest

away from the root node in G(Ai−1). We randomly choose one as

a primary configuration for constructing Pi , denoted as Cprim; see

Figure 7(b-e). Our idea is to make Pi movable but not removable

in the configuration Cprim of G(Ai−1) such that we can create new

configurations in G(Ai) that are even further away from the root

node than Cprim in G(Ai−1).

i) Pick the moving direction di in configuration Cprim. We identify

the set of non-height-field directions for the assembly Ai−1 at con-

figuration Cprim, and randomly choose one direction in the set as

Pi ’s moving direction di ; see Figure 9(a&d).

ii) Pick a seed voxel in configuration Cprim. A seed voxel is selected

such that Pi is movable but not removable along direction di in the

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

150:10 • Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel

Algorithm 4 Algorithm to modify a puzzle P to increase its level

of difficulty to L.

1: functionModifyPuzzle(P)
2: for m=0; m<IterNum; m++ do

3: randomly select a voxel Vk in P using reachability

4: randomly select a neighboring puzzle piece Pj of Vk

5: let Pi be the puzzle piece that has Vk
6: assign Vk from Pi to Pj
7: let P̄ be the modified puzzle

8: if Pi in P̄ is not connected then
9: continue

10: if P̄ is not disassemblable then
11: continue

12: if Lexact(P̄) == L then return P̄

13: if (Lexact(P̄) > Lexact(P)) || ((Lexact(P̄) == Lexact(P)) &&
(L

total
(P̄) > L

total
(P))) then

14: P← P̄

return NULL

primary configuration Cprim using the same approach for picking a

seed voxel for P1.

iii) Ensure blocking in all configurations inG(Ai−1). If the seed voxel
is movable along a direction that is not d1 in Cprim or movable

along any direction in other nodes in G(Ai−1), we will summarize

all these unwanted mobilities, choose a minimal number of pairs of

blocking and blockee voxels, and connect the seed voxel with each

blockee voxel using a shortest path to get rid of the mobilities; see

Figure 9(b&e).

iv) Expand Pi . We expand Pi by adding voxels one by one to Pi ,
without violating the mobility and blocking conditions that have

been satisfied for any configuration in G(Ai−1); see Figure 9(c&f).

The above puzzle piece construction process may not be always

successful. When it fails, our approach backtracks until all the puz-

zle pieces can be successfully constructed and disassembled. We

compute the level of difficulty of our generated puzzle by running

the disassembly planner in Section 4. In case that the generated

puzzle’s level of difficulty is different from the user-specified level L,
we will re-generate another puzzle design by repeating the random

construction process of the puzzle pieces. Our approach terminates

when the puzzle’s level of difficulty is the same as the user-specified

level L or the computation time exceeds a user-specified threshold.

In practice, we find that our approach is efficient when the user-

specified level L is not that large. However, when L is large, our

approach may fail to generate such puzzles within a user-specified

time threshold. To address this limitation, we introduce additional

modification operations on a puzzle generated by our approach,

aiming to increase its level of difficulty to the user-specified L.

Modifying {Pi }, 1 ≤ i ≤ K . We found that an interlocking puz-

zle’s level of difficulty is possible to be increased by a slight modifi-

cation on the puzzle geometry in our experiments. Inspired by this

observation, we perform the slight puzzle geometry modification

Fig. 10. (a) Voxelizing a given smooth shape. (b) Taking the voxelized shape

(with two hole voxels) as an input, we generate a (c) 5-piece level-2 inter-

locking puzzle by using our design approach in Section 5. (d) A puzzle with

smooth appearance is obtained by performing CSG intersection between

each voxelized puzzle piece in (c) and the input shape in (a). (e) However, the

generated puzzle pieces are possible to be structurally weak for fabrication

and playing (see red circles).

iteratively using Algorithm 4 to increase the level of difficulty. Our

algorithm consists of the following steps: 1) randomly choose a

voxel on the puzzle according to its reachability [Song et al. 2012]

(i.e., we prefer to choose a voxel with fewer number of neighbors);

2) assign the voxel to a neighboring puzzle piece that is randomly

selected; 3) compute the modified puzzle’s level of difficulty Lexact
and total number of moves L

total
; and 4) update the puzzle geometry

if the modification leads to a larger Lexact and/or Ltotal. The process
terminates when finding a level-L interlocking puzzle or exceeding

the maximum number of iterations.

6 SHAPE OPTIMIZATION AND VOXELIZATION

Our computational design approach in Section 5 can generate high-

level interlocking puzzles with voxelized shape. In this section, we

will extend our computational design approach to support generat-

ing puzzles with smooth appearance. To this end, a straightforward

approach is to directly perform a CSG intersection operation be-

tween each voxelized puzzle piece and the input smooth shape; see

Figure 10(a-d). However, this simple approach may result in struc-

turally weak puzzle pieces that can easily break during fabrication

or playing; see Figure 10(e). Such puzzle pieces typically include

voxels that contain only a tiny part of the input smooth shape, called

problematic voxels.
To address this issue, our idea is to minimize the number of such

problematic voxels by allowing slight deformation on the input

smooth shape during the voxelization. Then, we take the voxelized

shape without the problematic voxels to generate a high-level in-

terlocking puzzle, which guarantees the structural soundness of

each puzzle piece. In the end, we attach the tiny shape contained

in the problematic voxels (if any) back to the corresponding puzzle

piece following the approach in [Song et al. 2015]. We formulate

our problem of shape optimization for voxelization in Section 6.1

and then present a method to solve the problem in Section 6.2.

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

Computational Design of High-level Interlocking Puzzles • 150:11

Fig. 11. (a) Classify voxels in a voxelized shape. (b) Compute a shell whose

inner (in orange) and outer (in green) surfaces are obtained by offsetting

the boundary surface (in dark blue) of the full voxels. (c) Optimize the

input surface to minimize its distance to the shell, and thus to minimize

the number of problematic voxels. (d&e) Refine the puzzle’s appearance by

using the optimized smooth surface (in purple).

6.1 Shape Optimization Problem

The input smooth shape is represented as a mesh surface M with

vertices V and faces F. Assuming the voxel size µ is specified by the

user, we obtain an initial voxelized shape by voxelizing the mesh M
with the voxel size µ [Nooruddin and Turk 2003]. We classify voxels

in the voxelized shape into three classes according to the position

of each voxel relative to the mesh M: full voxel that is totally inside

the mesh M, empty voxel that is totally outside of the mesh M,

and partial voxel that intersects the mesh M. We further identify

problematic voxels as partial voxels that contain a tiny amount of

local shape of M; see Figure 11(a). In our experiments, problematic

voxels are partial voxels with less than 0.1µ3 volume filled.

The goal of our shape voxelization is to minimize the number of

problematic voxels while preserving the input shape M as much as

possible. Our search space includes: 1) a translational vector t that
defines the position of the mesh M with respect to the voxelized

shape; 2) a uniform scale factorw of the mesh M; and 3) vertices V
of the mesh M. We formulate our shape voxelization problem as an

optimization problem:

min

t,w ,V
Evoxel(t,w,V) + λEshape(V) (2)

where Evoxel is the number of problematic voxels, Eshape is the

shape preservation energy, and λ is the weight for the energy Eshape.
We define the energy Eshape(V) as an as-rigid-as-possible shape

preservation energy [Sorkine and Alexa 2007].

6.2 Optimization Solver

Solving the optimization problem in Equation 2 is challenging due

to two reasons. First, computing the gradient of Evoxel is complex,

which typically involves differentiation on the CSG intersection

operation between each voxel and the mesh M. Second, the search

space is large, and contains both the transformation (t,w) and ge-

ometry V of the input shape M.

Fig. 12. A Cow (left) before and (right) after our shape optimization. The

corresponding voxelized shape is also shown beside.

To address the first challenge, our observation is that the bound-

ary surface M
full

of the set of full voxels is a good approximation

of the input surface M; see Figure 11(a). Hence, we define a shell S
whose outer and inner surfaces are obtained by offsetting the bound-

ary surface M
full

by µ and a · µ (0.5 ≤ a ≤ 0.9 in our experiments)

distance, respectively; see Figure 11(b). If the input mesh M can

be optimized such that it is contained in the shell S, then there is

no problematic voxel since the local shape volume covered in each

partial voxel is at least (a · µ)3; see Figure 11(c). Moreover, the closer

the mesh M is to the shell S, the more likely there is a fewer number

of problematic voxels. Hence, we define:

Evoxel(t,w,V) =
∑
Fi ∈F
(dist(Fi (t,w,V), S))2 (3)

where Fi is a face of the mesh M and dist(Fi , S) is the distance

between the face Fi and the shell S. When a face Fi is contained in

the shell, dist(Fi , S) = 0.

To address the second challenge, we use a two-stage approach to

explore the search space effectively. First, the transformation stage

fixes the vertex positions V and searches for an optimal transform

(t,w) to minimize the energy Evoxel, during which we perform vox-

elization for each transformed mesh to compute the energy Evoxel.
Since the transform (t,w) is only 4 degrees of freedom, we can uni-

formly sample the variables’ space of (t,w) to find the optimal one.

Then, the deformation stage fixes the mesh transformation (t,w)
and deforms the input mesh M to minimize the energy of Equation 2,

assuming the voxelization is fixed. We use the L-BFGS algorithm to

solve the mesh deformation problem. We iterate between the shape

transformation stage and shape deformation stage until the ratio

between the number of problematic voxels and the total number of

voxels cannot be further reduced.

Figure 12 shows an example before and after our shape optimiza-

tion. It took our algorithm 30 minutes to reduce the problematic

voxel ratio from 23.3% to 11.7%. Please refer to the supplementary

material for details about our optimization solver.

7 RESULTS

We implemented our computational design tool in C++ and libigl [Ja-

cobson et al. 2018] on a desktop computer with 3.6 GHz 8-Core Intel

processor and 16 GB RAM. Our tool allows user control in several

aspects (see Table 1):

• Voxelization resolution. Users can specify the input voxelized

shape’s resolution, typically fewer than 1000 voxels. Low-resolution

voxelized shapes are preferred since they ensure that the move

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

150:12 • Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel

Fig. 13. High-level interlocking puzzles generated by our approach. From left to right and then top to bottom: Cube Frame, Shelf, Spider,Mario, Bunny,Moai,

Angry Bird, Owl, Pumpkin, and Squirrel.

of each puzzle piece for disassembly is significant relative to the

whole puzzle size.

• Number of hole voxels E. For convex input shapes such as Cube,

hole voxels are needed to generate high-level interlocking puzzles.

By default, our tool inserts a single hole voxel at the center of the

shape. Users can override this by specifying the number of hole

voxels E as well as their locations in the input shape.

• Number of puzzle pieces K . The number of puzzle pieces K is

typically between 3 and 8.

• Target level of difficulty L. The target level of difficulty L is typi-

cally between 4 to 30. When L is too large, our tool may not be

able to generate such a puzzle. In this case, our tool will output

the puzzle whose level of difficulty is closest to L.

Results. Our design tool allows generating high-level interlocking
puzzles with a variety of voxelized shapes and topologies, including

Cube Frame with hollows, Shelf with four large cavities, Spider

with elongated features, andMariowith a 2.5D shape; see Figure 13

(top). The variety of 3D shapes that can be represented by a low-

resolution voxelization is limited. Thanks to our shape optimization,

our tool can generate high-level interlocking puzzles with smooth

appearance, which significantly extends the resulting puzzles’ shape

complexity and variety; see Figure 13 (bottom). Our tool can gen-

erate interlocking puzzles with a very high level of difficulty; see

the 5-piece level-27 interlocking Cube in Figure 15. We refer to the

accompanying video for the disassembly animation of the results.

We provide the puzzle piece 3D models and the kernel disassembly

graph of each result in the supplementary material.

Table 1 provides the statistics of all the results shown in the paper.

To generate high-level interlocking puzzles efficiently, it is usually

necessary to modify the puzzle pieces using Algorithm 4; see the

second column from right in the table. For example, we could not

generate a level-15 Shelf by running the puzzle piece construction

algorithm for 24 hours. Instead, we were able to generate a level-15

Table 1. Statistics of our results. The labels in 4th to 12th columns refer

to the voxelization resolution, number of hole voxels E , number of puzzle

pieces K , level of difficulty L, number of nodes (GN), edges (GE), and target

nodes (GT) in the kernel disassembly graph, whether the puzzle pieces are

modified to improve the level of difficulty (Modify), and time for generating

the result (excluding time for shape optimization).

Shelfwithin 1.23 hours by first generating a level-6 Shelf using the

puzzle piece construction algorithm (0.95 hours) and then modifying

the puzzle’s geometry using Algorithm 4 (0.28 hours).

Complexity and performance. The complexity of our puzzle design

problem is O(KN · N 2K), where K is the number of puzzle pieces

and N is the number of voxels. For a given input shape, the total

number of possible puzzle designs (including invalid ones) is KN
,

since each voxel can be assigned to any puzzle piece. For each

design, we need to compute its level of difficulty by building a kernel

disassembly graph using a BFS-based algorithm with complexity

O(V + E), where V and E are the number of vertices and edges in

the graph respectively. In the worst case,V = NK
since each puzzle

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

Computational Design of High-level Interlocking Puzzles • 150:13

Table 2. Comparing our approach with a baseline [Gontier 2020] for generating high-level interlocking Cubes with a single hole voxel at the center. The

numbers in the table are the highest level of difficulty that can be achieved by both approaches, given the same amount of computation time (i.e., 12 hours).

Table 3. Performance of our approach for generating K-piece level-L inter-

locking 5 × 5 × 5 Cubes with a single hole voxel. The computational time of

each result is in minutes.

piece can be at any discrete position of the puzzle, and E = V 2 =

N 2K
assuming every pair of vertices is connected by an edge. Hence,

the complexity of the design problem is O(KN) ·O(NK + N 2K) =

O(KN · N 2K). Due to the high complexity of the design problem,

our paper focuses on addressing the problem in a small scale, i.e.,

K ≤ 8 and N ≤ 1000.

Despite the high complexity of the problem, our design approach

is able to find a solution in the huge design space using a reason-

able amount of time. We evaluate the performance of our design

approach on a 5 × 5 × 5 Cube with a single hole voxel at the center;

see Table 3. The computation time of our approach increases with

respect to the number of puzzle pieces K since a larger K means

each puzzle piece has fewer number of voxels, making them harder

to interlock. The computation time of our approach also increases

with respect to the target level of difficulty L since a larger L means

that the puzzle has to be interlocking in a larger number of configu-

rations. Our approach is efficient when K ≤ 6 and L ≤ 8, e.g., less

than 5 minutes for the 5 × 5 × 5 Cubes.

Comparison with [Gontier 2020]. We compare our design approach

with a baseline approach [Gontier 2020]. The baseline approach uses

a genetic algorithm to generate high-level interlocking puzzles, in

which each puzzle candidate (encoded as a 1D array) is an individual

Fig. 14. Our fabrication results. From top to bottom, Cube, Sofa, Airplane,

Cow, and Owl.

and the fitness function is the level of difficulty. To ensure a fair

comparison, we re-implemented the baseline approach in C++ and

replaced the disassembly planner with ours to compute the exact

level of difficulty. We ran both approaches for 12 hours to gener-

ate high-level interlocking Cubes with different resolutions, and

recorded the puzzle with the highest level of difficulty; see Table 2.

When the Cube puzzle has a low resolution (i.e. 4×4×4) and a small

number of pieces (i.e., K ≤ 4), the two approaches have comparable

performance. However, our approach has significantly better per-

formance than the baseline when the puzzle has a higher resolution

and/or a larger number of pieces, demonstrating its good scalability

to a large design space.

Physical puzzles. We fabricated five of our designed puzzles using

a Stratasys J750 multi-color 3D printer; see Figure 14. When playing

these puzzles, we found that a larger number (K) of puzzle pieces
makes the puzzle harder to play; e.g., the 5-piece Airplane is harder

to play than the 4-piece Sofa. This is because one needs more effort

to hold the puzzle pieces steadily so they remain in the correct

position of each configuration in order to make the next move. We

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

150:14 • Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel

Fig. 15. A kernel disassembly plan to take out the first puzzle piece (in cyan) from a 5-piece level-27 6 × 6 × 6 Cube designed by our approach.

also found that the time to solve the puzzle increases significantly

with the level of difficulty L. We argue that this is because a large L
usually means a large kernel disassembly graph, requiring one to

explore a large space of puzzle configurations to solve the puzzle.

User study. We conducted a user study to learn how difficult for

general users to play our high-level interlocking puzzles. Besides

the level-16 Cube, level-8 Sofa, and level-7 Owl shown in Figure 14,

we prepared two more puzzles for the user study, a level-4 Cube and

a level-8 Cube. We recruited 8 participants, 4 males and 4 females,

to play the five 3D printed puzzles, and recorded the time to solve

each puzzle for each participant. We found that the average time to

solve the puzzles increases with the puzzles’ level of difficulty (e.g.,

0.30 mins, 0.35 mins, and 7.02 mins for the level-4, -8, and -16 Cubes

respectively). In particular, four participants failed to solve the level-

16 Cube, due to its very high level of difficulty. One interesting

observation is that the time to solve a puzzle depends not only on

the level of difficulty but also on the kernel disassembly graph’s size.

For example, all the participants took a much longer time to solve

the level-8 Sofa than the level-8 Cube (i.e., 1.87 mins vs 0.35 mins on

average), likely because that the Sofa (307 graph nodes) has a much

larger kernel disassembly graph than the Cube (11 graph nodes).

After the user study, seven participants chose the Owl as the most

attractive puzzle because of its cute appearance. Our user study

confirms the necessity of using our computational tool to design

interlocking puzzles such that their level of difficulty matches the

ability of the user and their appearance can be attractive to the user.

Please refer to the supplementary material for more details about

our user study.

8 CONCLUSION

This paper presents a computational approach for designing high-

level interlocking puzzles from an input voxelized shape. For this

purpose, we propose a disassembly planner that is able to compute

a given puzzle’s exact level of difficulty by enumerating all possi-

ble non-monotone, linear/non-linear disassembly plans to take out

the first subassembly using a rooted graph data structure. We also

present a computational framework that constructs the geometry

of each puzzle piece iteratively guided by the disassembly planner,

aiming to achieve a user-specified level of difficulty. To extend our

approach for designing puzzles with smooth appearance, we for-

mulate and solve a new shape optimization problem for creating

voxelizations with a minimal number of problematic voxels. We

demonstrate the effectiveness of our approach by designing puzzles

with various shapes and topologies, show the advantages of our

approach by comparing it with a baseline, and evaluate the difficulty

of playing our designed puzzles in a user study.

Limitations and future work. First, our shape optimization focuses

on minimizing the number of problematic voxels yet does not con-

sider other requirements such as aesthetics and shape symmetry.

Second, our puzzle design approach requires a large internal vol-

ume of the input shape for making the puzzle pieces interlocking in

multiple configurations. Thus, it may fail for input shapes with no

or small internal volume such as architectural shells and tree-like

shapes. Third, we found that a high-level interlocking puzzle may be

hard to play if the puzzle is not stable in some configurations. One

possible way to address this limitation is to incorporate structural

stability analysis [Wang et al. 2021] into our computational design

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

Computational Design of High-level Interlocking Puzzles • 150:15

framework. Lastly, our puzzle design approach assumes that the

input shape is represented as a voxelization. In the future, we want

to extend our approach to support designing high-level interlocking

puzzles with other geometric forms such as Japanese Puzzle Boxes

with planar parts and integral joints as well as Excalibur Puzzles

with a big cube frame that holds the other small puzzle pieces.

ACKNOWLEDGMENTS

We thank the reviewers for the valuable comments, David Gontier

for sharing the source code of the baseline design approach, Chris-

tian Hafner for proofreading the paper, Keenan Crane for the 3D

model of Cow, and Thingiverse for the 3D models of Moai and Owl.

This work was supported by the SUTD Start-up Research Grant

(Number: SRG ISTD 2019 148), the Swiss National Science Founda-

tion (NCCR Digital Fabrication Agreement #51NF40-141853), and

the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (Grant Agree-

ment No 715767 – MATERIALIZABLE).

REFERENCES

Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat

Hanrahan, and Barbara Tversky. 2003. Designing Effective Step-By-Step Assembly

Instructions. ACM Trans. on Graph. (SIGGRAPH) 22, 3 (2003), 828–837.
Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the Art

on Stylized Fabrication. Comp. Graph. Forum 37, 6 (2018), 325–342.

A. Bourjault. 1984. Contribution a une approche méthodologique de l’assemblage au-
tomatisé: Elaboration automatique des séquences opératiores. Ph.D. Dissertation.

L’Université de Franche-Comté.

Stewart T. Coffin. 2006. Geometric Puzzle Design. A. K. Peters.
Bill Cutler. 1988. Holey 6-Piece Burr! A Collection and Computer Analysis of Unusual

Designs. http://billcutlerpuzzles.com/docs/H6PB/index.html .

Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-aware Design of Print-

able Electromechanical Devices. In Proc. ACM UIST. 457–472.
Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-

Hornung, and Mark Pauly. 2014. Assembling Self-Supporting Structures. ACM
Trans. on Graph. (SIGGRAPH Asia) 33, 6 (2014), 214:1–214:10.

Noah Duncan, Lap-Fai Yu, Sai-Kit Yeung, and Demetri Terzopoulos. 2017. Approximate

Dissections. ACM Trans. on Graph. (SIGGRAPH Asia) 36, 6 (2017), 182:1–182:14.
Gershon Elber andMyung-Soo Kim. 2022. Synthesis of 3D Jigsaw Puzzles over Freeform

2-Manifolds. Comp. & Graph. (SMI) 102 (2022), 339–348.
Thomas L. De Fazio and Daniel E. Whitney. 1987. Simplified Generation of All Mechan-

ical Assembly Sequences. IEEE Journal on Robotics and Automation RA-3, 6 (1987),

640–658.

Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar Jayaraman, and

Daniel Cohen-Or. 2015. Computational Interlocking Furniture Assembly. ACM
Trans. on Graph. (SIGGRAPH) 34, 4 (2015), 91:1–91:11.

Somayé Ghandi and Ellips Masehian. 2015. Review and Taxonomies of Assembly and

Disassembly Path Planning Problems and Approaches. Computer-Aided Design
67-68 (2015), 58–86.

David Gontier. 2020. Multi-level Interlocking Cubes. https://www.ceremade.dauphine.fr/

~gontier/Puzzles/InterlockingPuzzles/interlocking.html.

Jianwei Guo, Dong-Ming Yan, Er Li, Weiming Dong, Peter Wonka, and Xiaopeng Zhang.

2013. Illustrating the Disassembly of 3D Models. Comp. & Graph. (SMI) 37, 6 (2013),
574–581.

D. Halperin, J.-C. Latombe, , and R. H.Wilson. 2000. A General Framework for Assembly

Planning: The Motion Space Approach. Algorithmica 26, 3–4 (2000), 577–601.
IBM Research. 1997. The burr puzzles site. https://www.cs.brandeis.edu/~storer/JimPuzzles/

BURR/000BURR/READING/IbmPage.pdf .

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing

library. https://libigl.github.io/ .

P. Jiménez. 2013. Survey on Assembly Sequencing: A Combinatorial and Geometrical

Perspective. Journal of Intelligent Manufacturing 24, 2 (2013), 235–250.

Gene T.C. Kao, Axel Kórner, Daniel Sonntag, Long Nguyen, Achim Menges, and Jan

Knippers. 2017. Assembly-aware Design of Masonry Shell Structures: A Computa-

tional Approach. In Proceedings of the International Association for Shell and Spatial
Structures Symposium.

Lydia Kavraki, Jean-Claude Latombe, and Randall H. Wilson. 1993. On the Complexity

of Assembly Partitioning. Inform. Process. Lett. 48, 5 (1993), 229–235.

Bernhard Kerbl, Denis Kalkofen, Markus Steinberger, and Dieter Schmalstieg. 2015.

Interactive Disassembly Planning for Complex Objects. Comp. Graph. Forum (Euro-
graphics) 34, 2 (2015), 287–297.

Naoki Kita and Kazunori Miyata. 2020. Computational Design of Polyomino Puzzles.

The Visual Computer (CGI) (2020), 1–11.
Naoki Kita and Takafumi Saito. 2020. Computational Design of Generalized Centrifugal

Puzzles. Comp. & Graph. (SMI) 90 (2020), 21–28.
Duc Thanh Le, Juan Cortés, and Thierry Siméon. 2009. A Path Planning Approach to

(Dis)Assembly Sequencing. In Proc. Int. Conf. on Automation Science and Engineering.
286–291.

Shuhua Li, Ali Mahdavi-amiri, Ruizhen Hu, Han Liu, Chanqing Zou, Oliver Van Kaick,

Xiuping Liu, Hui Huang, and Hao Zhang. 2018. Construction and Fabrication of

Reversible Shape Transforms. ACM Trans. on Graph. (SIGGRAPH Asia) 37, 6 (2018),
190:1–190:14.

Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 2009. 3D Polyomino Puzzle. ACM Trans. on
Graph. (SIGGRAPH Asia) 28, 5 (2009), 157:1–157:8.

Ellips Masehian and Somayé Ghandi. 2020. ASPPR: A NewAssembly Sequence and Path

Planner/Replanner for Monotone and Nonmonotone Assembly Planning. Computer-
Aided Design 123 (2020), 102828:1–102828:22.

Ellips Masehian and Somayé Ghandi. 2021. Assembly Sequence and Path Planning for

Monotone and Nonmonotone Assemblies with Rigid and Flexible Parts. Robotics
and Computer-Integrated Manufacturing 72 (2021), 102180:1–102180:23.

Luiz S. HomemDeMello andArthur C. Sanderson. 1990. AND/ORGraph Representation

of Assembly Plans. IEEE Transactions on Robotics and Automation 6, 2 (1990), 188–

199.

Fakir S. Nooruddin and Greg Turk. 2003. Simplification and Repair of Polygonal Models

Using Volumetric Techniques. IEEE Trans. Vis. & Comp. Graphics 9, 2 (2003), 191–205.
Andreas Röver. 2013. Burr Tools. http://burrtools.sourceforge.net/.

Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang

Liu. 2016. CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects. ACM Trans. on
Graph. (SIGGRAPH) 35, 4 (2016), 45:1–45:11.

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles.

ACM Trans. on Graph. (SIGGRAPH Asia) 31, 6 (2012), 128:1–128:10.
Peng Song, Chi-Wing Fu, Yueming Jin, Hongfei Xu, Ligang Liu, Pheng-Ann Heng, and

Daniel Cohen-Or. 2017. Reconfigurable Interlocking Furniture. ACM Trans. on
Graph. (SIGGRAPH Asia) 36, 6 (2017), 174:1–174:14.

Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. 2015. Printing 3D Objects with

Interlocking Parts. Comp. Aided Geom. Des. (GMP) 35-36 (2015), 137–148.
Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Proc.

Eurographics Symposium on Geometry Processing. 109–116.
Timothy Sun and Changxi Zheng. 2015. Computational Design of Twisty Joints and

Puzzles. ACM Trans. on Graph. (SIGGRAPH) 34, 4 (2015), 101:1–101:11.
Keke Tang, Peng Song, Xiaofei Wang, Bailin Deng, Chi-Wing Fu, and Ligang Liu.

2019. Computational Design of Steady 3D Dissection Puzzles. Comp. Graph. Forum
(Eurographics) 38, 2 (2019), 291–303.

Jungfu Tsao and Jan Wolter. 1993. Assembly Planning with Intermediate States. In Proc.
IEEE Int. Conf. on Robotics and Automation. 71–76.

Ziqi Wang, Peng Song, Florin Isvoranu, and Mark Pauly. 2019. Design and Struc-

tural Optimization of Topological Interlocking Assemblies. ACM Trans. on Graph.
(SIGGRAPH Asia) 38, 6 (2019), 193:1–193:13.

Ziqi Wang, Peng Song, and Mark Pauly. 2018. DESIA: A General Framework for

Designing Interlocking Assemblies. ACM Trans. on Graph. (SIGGRAPH Asia) 37, 6
(2018), 191:1–191:14.

Ziqi Wang, Peng Song, and Mark Pauly. 2021. State of the Art on Computational Design

of Assemblies with Rigid Parts. Comp. Graph. Forum (Eurographics) 40, 2 (2021),
633–657.

Jan D. Wolter. 1991. A Combinatorial Analysis of Enumerative Data Structures for

Assembly Planning. In Proc. IEEE Int. Conf. on Robotics and Automation. 611–618.
Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock,

and Adriana Schulz. 2019. Carpentry Compiler. ACM Trans. on Graph. (SIGGRAPH
Asia) 38, 6 (2019), 195:1–195:14.

Shi-Qing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-TsinWong, Ying He, and Daniel Cohen-Or.

2011. Making Burr Puzzles from 3D Models. ACM Trans. on Graph. (SIGGRAPH) 30,
4 (2011), 97:1–97:8.

Miaojun Yao, Zhili Chen, Weiwei Xu, and Huamin Wang. 2017. Modeling, Evaluation

and Optimization of Interlocking Shell Pieces. Comp. Graph. Forum (Pacific Graphics)
36, 7 (2017), 1–13.

Yinan Zhang and Devin Balkcom. 2016. Interlocking Structure Assembly with Voxels.

In Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. 2173–2180.
Yinan Zhang, Yotto Koga, and Devin Balkcom. 2021. Interlocking Block Assembly

With Robots. IEEE Transactions on Automation Science and Engineering 18, 3 (2021),

902–916.

Yahan Zhou and Rui Wang. 2012. An Algorithm for Creating Geometric Dissection

Puzzles. In Proc. Bridges Towson: Mathematics, Music, Art, Architecture, Culture. 49–
56.

ACM Trans. Graph., Vol. 41, No. 4, Article 150. Publication date: July 2022.

http://billcutlerpuzzles.com/docs/H6PB/index.html
https://www.ceremade.dauphine.fr/~gontier/Puzzles/InterlockingPuzzles/interlocking.html
https://www.ceremade.dauphine.fr/~gontier/Puzzles/InterlockingPuzzles/interlocking.html
https://www.cs.brandeis.edu/~storer/JimPuzzles/BURR/000BURR/READING/IbmPage.pdf
https://www.cs.brandeis.edu/~storer/JimPuzzles/BURR/000BURR/READING/IbmPage.pdf
https://libigl.github.io/
http://burrtools.sourceforge.net/

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Disassembly Planner
	4.1 Definitions
	4.2 Computing Level of Difficulty
	4.3 Disassembly Planning

	5 Puzzle Design Approach
	5.1 Computational Framework
	5.2 Puzzle Piece Construction

	6 Shape Optimization and Voxelization
	6.1 Shape Optimization Problem
	6.2 Optimization Solver

	7 Results
	8 Conclusion
	References

