Supplementary Material for
Computational Design of High-level Interlocking Puzzles

This supplementary material is composed of three parts. The first
part presents implementation details about our shape optimization
in Section 6 of the paper. The second part illustrates the kernel
disassembly graph of 3D puzzle results shown in the paper. The last
part presents details about our user study in Section 7 of the paper.

1 Shape Optimization and Voxelization

This section provides algorithmic details for the shape optimization
and voxelization presented in our paper. The pseudocode of our
algorithm is presented below.

Our method has two steps: transformation step and shape op-
timization step. Our approach has to iterate between these
two steps m times in order to converge to a good result. In
the transformation step, our algorithm scales and transforms the
mesh to minimize the energy FE.ox.1. We use the function
TransformationOpt (V) for this problem. In the shape op-
timization step, we optimize the mesh’s vertices to reduce the
voxel energy Eoxe1 While preserving the shape energy Egnape.
The main function of this step is MeshOpt (V,S,{R,;}). The
shape preservation energy we use is from the paper [Sorkine and
Alexa 2007], which requires us to compute series of rigid trans-
formations {R;} before optimizing the mesh’s vertices. The
function RigidTransformation (V,Vy) is aimed for this
purpose. We iterate the shape optimization and computation
of the rigid transformation m times to acquire an actual shape
preservation energy Fsnape. Lastly, the mesh needs to be de-
formed into a shell S which is generated by using the function
ShellGeneration (i+1, Wi+1, V).

ALGORITHM 1: Pseudocode for shape optimization and vox-
elization

Function shape _optimization voxelization (V)
1 =0;
V =Vy;
for i < n do
t, w = TransformationOpt(V);
S = ShellGeneration(t;+1, wi+1, V);
Jj=0;
for j <m do
{R.} = RigidTransformation(V, Vy);
V =MeshOpt(V, S, {R;});
end
end
return (V,t, w);

end

Parameters:

(1) n: the number of iterations of optimization both voxel trans-
formation and shape optimization

(2) m: the number of iterations of conducting the as-rigid-as pos-
sible method [Sorkine and Alexa 2007].

1.1 TransformationOpt (V)

We uniformly sample the variables’ space of (¢,w). Among them,
we find the optimal (¢,w) with the lowest energy E.oxe1. The

key for computing this energy is to calculate the volume of each
voxel (intersection with the mesh). Rather than computing the exact
intersection shape, we uniformly sample points inside the voxel and
count those that are inside the mesh. This number gives a rough
approximation of the voxel’s volume. To further accelerate the query
of whether a point is inside a given mesh, we utilize the method
“fast winding number” from paper [Barill et al. 2018]. Note that
by carefully choosing the sampling density, we could reuse some
sampling points to reduce computational cost.

1.2 RigidTransformation (V)

We follow the optimization scheme from the paper [Sorkine and
Alexa 2007]. For each local iteration, it computes a rigid transfor-
mation {R;} from the initial shape V| to the deformed shape V by
minimizing the following energy:
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where ¢ goes through the vertices of the input shape, N (%) is the
1-ring neighbour of vertex ¢, v; is the vertices’ position of the de-
formed shape, and v? is the vertices’ position of the initial shape.

The paper [Sorkine and Alexa 2007] provides a fast implementation
of computing the rotation matrix {R;} by utilizing the singular
value decomposition. Please refer to their paper for more details.

1.3 MeshOpt (V,S,{R;})

After computing the rigid transformation {R.;}, we formulate the
shape energy as:

Eshape = Z Z |(V1 _Vj) _Rl(v'? _V?)‘Q (2)

We first compute derivatives of Egnape and Eyoxe1 With respect to
V. We then solve the optimization by using L-BFGS method.

2 Kernel Disassembly Graph

For each puzzle result shown in the paper, we provide the 3D models
of the puzzle pieces, as well as the kernel disassembly graph, as
supplementary data. In the following, we show an example kernel
disassembly graph for a level-5 CUBE puzzle in Figure 1. Each node
in the kernel disassembly graph represents a puzzle configuration.
The green node indicates the initial puzzle configuration (i.e., the
root node) and the red node indicates a target node where a sub-
assembly has been taken out. The blue line shows the shortest path
to take out the first subassembly which defines the puzzle’s level of
difficulty. Please refer to Figure 3 and our provided supplementary
data for more complicated graphs.

3 User Study

In our user study, we recruited 8 participants, 4 males and 4 females,
between 19 to 33 years old. For each participant, we briefly intro-
duced the concept of our high-level interlocking puzzle and then
informed him/her the task of solving a given puzzle by translating
the puzzle pieces. After each participant tried to solve the puzzle (i.e.
disassemble the puzzle into individual pieces) within 15 minutes, we
recorded whether he/she solved the puzzle successfully as well as
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Figure 1: (Left) Kernel disassembly graph of (right) a level-5 CUBE.

Smooth

Model Appearance Resolution | E K L Gy Ge Gt
Cube_L4 No 5x5x5 1 3 4 5 4 1
Cube_L8 No 5x5x5 1 3 8 11 1 1

Cube_L16 No 5x5x5 1 4 16 64 82 14
Sofa No 7x8x6 0 4 8 307 | 637 | 91
Owl Yes 5x5x5 1 3 7 8 7 1

Table 1: Statistics of the puzzles for our user study. The labels in
the 3rd to 9th columns refer to the voxelization resolution, number
of hole voxels E, number of puzzle pieces K, level of difficulty L,
number of nodes (G n ), edges (Gg), and target nodes (G ) in the
kernel disassembly graph.

the time that he/she solved the puzzle. A questionnaire was required
to be filled in after playing puzzles for each participant, which asked
each participant to select the most attractive puzzle and the hardest
puzzle among the given puzzles. We presented 5 puzzles to each
participant including 3 CUBE 5x5x5 puzzles, SOFA and OWL; see
Table 1 and Figure 2.

Result. The statistics of our user study is presented in Table 2.
The slash in Table 2 means the user cannot solve the given puzzle in
15 minutes. There are three findings in our user study:

* Level of difficulty. We find that the average solving time increases
with the level of difficulty. Specifically, if the level of difficulty
is not that large (e.g. less than 8), the difference of solving time
is not that significant. Moreover, when the level of difficulty
increases to 16, 4 of our participants cannot solve CUBE_L16
within 15 minutes and the rest 4 participants’ solving time is 7.021
minutes on average. All the participants claim that the hardest one
among the five puzzles is CUBE_L 16, which confirms that level
of difficulty is an effective criterion to measure how challenging a
puzzle is for users.

* Kernel disassembly graph size. By comparing the data of the
CUBE_LS8 and SOFA, the level of difficulty may not be the only

Figure 2: Puzzles for our user study. From top to bottom, CUBE_L4,
CUBE_L8, CUBE_L16, SOFA, and OWL.

criterion to measure the degree of complexity to solve a puzzle.
These two puzzles have the same level-of-difficulty and similar
resolution, but the average solving time of these 2 puzzles shows
significant difference, 0.352 minutes for CUBE_L8 and 1.871
minutes for SOFA, respectively. We infer that the difference of
kernel disassembly graph size leads to the difference of solving
time for these 2 puzzles. The kernel disassembly graph of SOFA
contains 307 nodes, 637 edges and 91 target nodes while that of
CUBE_LS has only 11 nodes, 11 edges and 1 target node; see
Figure 3. The bigger kernel disassembly graph means that the
user has to put more effort to find a disassembly plan in a larger
puzzle configuration space.

Puzzle appearance. From the questionnaires filled in by the partic-
ipants, 7 of 8 participants select OWL as the most attractive puzzle
because of the fancy puzzle appearance. From the perspective of
users, they may not only focus on the degree of complexity to
solve the puzzle but also the fascinating puzzle appearance, which
confirms the necessity of our approach to design puzzles with
smooth appearance. By comparing the data of CUBE_LS8 puzzle
and OWL, which have the similar level and disassembly graph
size, it shows significant difference of solving time, averagely
0.352 and 2.410 minutes, respectively. According to the feedback
of the participants, the smooth appearance of puzzles may make
it difficult to recognize blocking relationship among the puzzle
pieces, therefore slowing down the puzzle solving process.
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Cube 14 | Cube L8 | Cube L16 Sofa Owl The most attractive| The hardest
(mins) (mins) (mins) (mins) (mins) puzzle puzzle
User 1 0.250 0.350 / 1.567 1.833 Owl Cube_L16
User 2 0.200 0.450 / 2.250 3.250 Owl Cube_L16
User 3 0.350 0.333 / 2.667 3.250 Owl Cube_L16
User 4 0.383 0.417 6.500 4.250 1.133 Cube_L16 Cube_L16
User 5 0.250 0.183 9.417 0.750 2.133 Owl Cube_L16
User 6 0.416 0.500 / 0.833 3.167 Owl Cube_L16
User 7 0.300 0.333 5.500 1.050 2.783 Owl Cube_L16
User 8 0.233 0.250 6.667 1.600 1.733 Owl Cube_L16
Average Solving Time (mins) 0.298 0.352 7.021 1.871 2.410

Table 2: Statistics of our user study. The 2nd column to 6th column present the puzzle solving time of each puzzle in minutes. Specifically,
slash means the user cannot solve the given puzzle within 15 minutes. The 7th and 8th columns show the most attractive puzzle and the hardest
puzzle selected by each participant. The last row provides the average time to solve each puzzle.

Figure 3: Left: Kernel disassembly graph of CUBE_LS8. Right: Kernel disassembly graph of SOFA. CUBE_LS8 and SOFA are both level-8
puzzles but the kernel disassembly graph size of SOFA is much bigger than that of CUBE_LS.



