
Supplementary Material for
Masonry Shell Structures with Discrete Equivalence Classes

This supplementary material is composed of two parts. The first part
provides implementation details about our base mesh optimization
in Section 5.1 of the paper. The second part shows the input surface
and optimized base mesh for each result shown in Figure 13 of the
paper.

1 Implementation of Base Mesh Optimization
We solve the base mesh optimization problem using ShapeOp li-
brary [Bouaziz et al. 2012; Bouaziz et al. 2014]. In this optimization
problem, the search space is the vertices {vi} of the base mesh, and
the objective functions E1 and E2 consist of six terms, i.e., Eedge,
Edihed, Eplanar, Esurf, Esmth, and Epolygon. Among the six terms, we
have provided formulas of Esurf and Esmth expressed as functions of
mesh vertices {vi} in the paper.

We also provided the following formulas for Eedge, Edihed, Eplanar,
and Epolygon in the paper:
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k
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However, some of the above formulas are not expressed as functions
of mesh vertices {vi}. This section explains how Eedge, Epolygon,
Eplanar and Edihed can be reformulated using mesh vertices vi such
that the optimization problem can be solved using ShapeOp library.

1.1 Eedge, Epolygon and Eplanar

The terms Eedge, Epolygon and Eplanar involve a set of constraints {Ci}
regarding the mesh vertex positions. Following the solving strategy
in [Bouaziz et al. 2012], in each iteration we update the definition of
each term according to the projections of the vertex positions to the
feasible set of the constraints. Specifically, Eedge, Epolygon and Eplanar
can each be written in the following form in the k-th iteration:

∑
i

∥QiV − PCi(QiV
(k))∥

2
,

where V concatenates the vertex position variables, V(k)) are the
vertex positions in the current iteration, the matrix Qi selects the
relevant vertices for the constraint Ci and performs mean-centering
on their positions, and PCi(⋅) is the closest projection of point posi-
tions onto the feasible set of Ci. The computation of the projections
is explained below.

1.1.1 Point-to-point distance Projection

Recall Eedge and Epolygon involve constraints regarding the lengths of
boundary edges and diagonals of the polygons, respectively. Specif-
ically, each constraint specifies a target value d∗j for the distance
between two vertices vj1 ,vj2 . Given two mean-centered positions
vj1 and vj2 , the projections onto the feasible set are computed as

P (vjk) =
d∗ij

∥vj1 − vj2∥
vjk , k = 1,2.

1.1.2 Planar Projection

For Eplanar, each constraint require the vertices vj1 , . . . ,vjm from
the same polygon to lie on a common plane. Given the mean-
centered positions vj1 , . . . ,vjm , the projections onto the feasible
set are computed as

P (vjk) = vjk − n(n ⋅ vjk). k = 1, . . . ,m,

where n is a unit normal vector for the best-fitting plane and is
computed as a right singular vector for the matrix [vj1 , . . . ,vjm]T ∈
Rm×3 corresponding to the smallest singular value.

1.2 Edihed

[Bouaziz et al. 2014] introduced a bending energy measuring the
squared difference of absolute mean curvatures

Ebending =
w

2 ∫S
(∣Hf ∣ − ∣Hg∣)2dA, (1)

where Hf and Hg are the mean curvature functions of deformed
and undeformed surface respectively. The dihedral angles for each
connected faces can be represented as discretizied bending energy
proposed by [Bouaziz et al. 2014]. Given a mesh with n dihedral
angles, Edihed can be formulated by introducing an auxiliary rotation
matrices R as

Edihed =
n

∑
i=1

w

2
A ∥Xfc −RXgc∥22 + δSO(3)(R), (2)

where A is the Voronoi area of the vertex, Xfc and Xgc derived
from αi

k and αk, and c is the cotangent weights in the Voronoi area,
see details in Section 5.4 of [Bouaziz et al. 2014]

2 Input Surfaces and Optimized Meshes
This section provides the input guiding surface and optimized base
mesh for each result shown in Figure 13 of our paper. In Figure 1,
we can see how input surface is deformed by our mesh optimization
in order to improve performance in clustering edges, dihedral angles
and polygons. Some surfaces are flatten obviously such as MONKEY
SADDLE and ROOF due to the sharp curvature changes of the input
surface.

Thanks to our base mesh optimization, the number (KF ) of clusters
of polygons in the optimized mesh is quite small, usually less than
10; see Table 1 in the paper for details. For the optimized MONKEY
SADDLE, we can even use a single polygon to tile the whole surface.
In our results, the number (KS) of clusters of elements is much
larger than the number (KF ) of clusters of polygons, even if we
have optimized the augmented angles to reduce KS as much as
possible, showing that tiling a freeform surface with shell elements
is much more challenging than tiling the surface with polygons.
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Figure 1: We provide the input surface and optimized base mesh for each result shown in Figure 13 of the paper. Polygons in the same cluster
of the optimized mesh are rendered with the same color.


