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Fig. 1. We present a computational approach for modeling a multi-point conjugation mechanism capable of generating a user-specified 3D motion, e.g., for
manipulating a box, driven by a single actuator. Our mechanism features a simple topology comprising only two moving parts, modeled as a pair of conjugate
surfaces with multiple conjugation points.

A mechanism is an assembly of moving parts interconnected by joints to
transfer an input motion to a desired output motion. Traditionally, to gener-
ate a complex motion, mechanisms are modeled by selecting and combining
a number of mechanical parts with simple shapes such as links, gears, and
cams. Combining multiple mechanical parts results in a mechanism with
an intricate topology, which not only complicates assembly and mainte-
nance but also deteriorates the functionality of generating motions due to
accumulation of manufacturing imprecisions. To get rid of these limitations,
we study mechanisms with a single pair of moving parts for generating
complex motions. We model the pair of moving parts as a pair of conjugate
surfaces with multiple conjugation points, forming amulti-point conjugation
mechanism.

To study this new mechanism, we establish a connection between con-
jugate surface pairs and form-closure grasps to formulate a dynamic form
closure condition under which one conjugate surface is able to continuously
transfer the motion to the other conjugate surface by utilizing multiple con-
jugation points. Guided by the condition, we propose an optimization-based
approach to model the geometry of a multi-point conjugation mechanism
for exactly generating a user-specified motion, in 1-, 2-, or 3-DOF motion
space. The core of our approach is to model multiple conjugate curve pairs
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that satisfy various requirements in multi-point conjugation, dynamic form
closure, and surface fabricability. We demonstrate the effectiveness of our
approach by modeling different classes of multi-point conjugation mecha-
nisms to generate various motions, evaluating the mechanisms’ kinematic
performance with 3D printed prototypes, and presenting three applications
of these mechanisms.
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1 INTRODUCTION
A mechanism is an assembly of moving parts interconnected by
joints to transfer an input motion, usually a rotary motion from an
actuator, to a desired outputmotion. Elemental mechanisms can only
generate simple motions; e.g., a cam-follower mechanism generates
a linear motion. To generate a complex motion, a conventional
approach is tomodel a compositemechanism by connectingmultiple
elemental mechanisms including linkages, cam-followers, and gear
pairs [Gatti and Mundo 2007; Mckinley et al. 2005; Takahashi and
Okuno 2018]. These compositemechanisms usually have an intricate
topology, complicating their assembly and maintenance. Moreover,
it is reasonable to assume that the mechanism’s intricate topology
would deteriorate its functionality of generating motions due to
accumulation of manufacturing imprecision of each component
part.
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To overcome the above limitations of conventional mechanisms,
an emerging approach is to model a mechanism with a simple topol-
ogy yet still able to transfer complex motions, where the core idea
is to encode the complex motion into freeform geometry of the
mechanism. Thanks to the recent advancement in additive manu-
facturing, mechanisms with freeform geometry can be fabricated
with 3D printing conveniently and inexpensively. Yet, modeling
mechanisms with freeform geometry to generate a user-specified
motion remains a challenging task. Recently, a few research works
attempted to address this challenge by generalizing geometry of 3D
cam-follower mechanisms [Cheng et al. 2021] and gear pairs [Hou
and Lin 2020; Hu et al. 2021]. However, these mechanisms can only
generate a motionwith limited complexity such as motions in 2-DOF
motion space for realizing a path on a spherical surface.

In this paper, we study themodeling of mechanismswith freeform
geometry for 3Dmotion generation from a new perspective in terms
of conjugate surface pairs. According to the theory of conjugate sur-
faces [Chen 1978], a pair of mechanical parts is a pair of conjugate
surfaces that always contact each other to transfer relative motion
between them. The contact entity between a pair of conjugate sur-
facesmay be a point, a line segment, or a surface patch. Conventional
mechanisms principally rely on line conjugation (e.g., gear pair) and
surface conjugation (e.g., revolute joint) to transfer motions. Very lit-
tle attention is paid to the point conjugation for modeling man-made
mechanisms although it has been encountered in human/animal
skeletons (i.e., bio-mechanisms) [Chen and Chen 2003]. To transfer
a complex motion, our idea is to use multiple conjugation points
between a conjugate surface pair, forming a multi-point conjugation
mechanisms (mpcMech). By coordinating the instantaneous contact
positions and normals of the multiple conjugation points, one conju-
gate surface is able to continuously transfer its motion to the other
conjugate surface to achieve a desired output motion.

However, it is non-trivial to model multi-point conjugation mech-
anisms to generate a user-specified motion. First, the existing theory
of conjugate surfaces [Chen 1978] is not sufficient to guide the mod-
eling of mpcMechs since it only provides fundamental requirements
of point conjugation but not the condition under which one conju-
gate surface is able to continuously transfer the motion to the other
conjugate surface. Second, a conjugate surface pair should satisfy
various requirements in order to form a working 2-moving-part
mechanism, including multi-point conjugation, continuous motion
transfer, and fabricable surface. To address these challenges, we
make the following contributions:

• We develop a dynamic form closure 1 condition under which one
conjugate surface is able to continuously transfer the motion
to the other conjugate surface by utilizing multiple conjugation
points. This new condition is achieved by establishing a connec-
tion between conjugate surface pairs and form-closure grasps,
laying a foundation for modeling multi-point conjugation mecha-
nisms.

1We use the word “dynamic” to highlight the dynamic change of contact points between
a pair of conjugate surfaces for transferring motion over time and to differentiate our
condition from the well-known (static) form closure condition in grasping.

• We propose an optimization-based approach to model the geome-
try of a multi-point conjugation mechanism for exactly generat-
ing a user-specified motion in N -DOF, N ∈ [1, 3] motion space.
The core of the approach is to model multiple pairs of conjugate
curves that satisfy various requirements in multi-point conju-
gation, dynamic form closure, surface fabricability, and motion
generation.

We show that our mpcMech is able to exactly generate a wide
variety of motions specified by users, including those in 3-DOF
motion space. To the best of our knowledge, our mpcMech is the
first 2-moving-part mechanism that is able to generate motions
in motion space beyond 2-DOF. We have evaluated the kinematic
performance of our modeled mpcMechs with 3D printed prototypes,
and demonstrated the usefulness of these mechanisms with three
applications.

2 RELATED WORK
Mechanism design. The goal of mechanism design is to transfer

an input motion from a single actuator to a desired target motion,
represented by a prescribed set of sequential rigid-body poses or
a prescribed trajectory. To generate complex motions, the conven-
tional approach is to select and combine multiple mechanical parts
with simple shapes, e.g., a linkage with a number of rigid [Bächer
et al. 2015; Megaro et al. 2014; Thomaszewski et al. 2014] or com-
pliant joints [Megaro et al. 2017; Tang et al. 2020; Xu et al. 2018], a
combination of linkages with planar cams [Gatti and Mundo 2007;
Mundo et al. 2006; Takahashi and Okuno 2018], a combination of
linkages with circular [Ceylan et al. 2013; Roussel et al. 2018] or
non-circular [Coros et al. 2013; Mundo et al. 2009] gears, and a
combination of linkages with belts [Liu and McCarthy 2017]. The
combination of multiple mechanical parts with simple shapes usu-
ally results in an intricate topology of the mechanism, which has
a negative effect on the assembly, usage, and maintenance of the
mechanism.

Emerging mechanisms. An emerging approach to overcoming
the above limitations of conventional mechanisms is to encode the
target motion into the freeform geometry of a mechanism with 2
or 3 moving parts. Hou and Lin [2020] studied oval non-circular
bevel gears that generate a compound motion of rotation and axial
translation. Hu et al. [2021] studied the curve-face gear pair for gen-
erating a spatial finite helical motion with a variable transmission
ratio. Abe et al. [2021] proposed spherical gears in which the 3-DOF
rotational motion of a cross spherical gear is driven by two mono-
pole gears’ 2-DOF rotational motions. Cheng et al. [2021] proposed
a 3D cam-follower mechanism for exact 2D path generation (e.g.,
on a spherical surface), where the target path is encoded into the
freeform geometry of a ball-move-in-groove joint on the 3D cam.
This mechanism is later combined with a 5-bar spatial linkage for
exact 3D path generation [Cheng et al. 2022] .
The geometry of the above 2-moving-part mechanisms [Cheng

et al. 2021; Hou and Lin 2020; Hu et al. 2021] is specifically modeled
to generate motions in 2-DOF motion space. To the best of our
knowledge, we do not find any existing 2-moving-part mechanism
that is able to generate motions in motion space beyond 2 DOFs. In
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this paper, we propose a new 2-moving-part mechanism called multi-
point conjugation mechanism that is able to generate a variety of
motions, including those in 1-, 2-, 3-DOFmotion space; see Figure 10.
We model the two moving parts in the mechanism as a conjugate
surface pair with multiple conjugation points.

Conjugate curves/surfaces. A pair of conjugate curves/surfaces
consists of two smooth curves/surfaces that always keep continuous
and tangent contact with each other under motion law [Chen 1978];
see Section 4.1 for a review. Conjugation is a necessary condition for
motion transmission between contact surfaces such as a pair of gears.
In recent years, researchers in mechanical engineering modeled a
single pair of conjugate curves to explore gear tooth profiles with
varying shapes, including spur gears [Chen et al. 2014a] and spiral
bevel gears [Chen et al. 2014b] with circular arc tooth profiles, spur
gears with 2D freeform tooth profiles [Yu and Ting 2013], and spiral
bevel gears with spatial freeform tooth profiles [Tan et al. 2015].
Researchers also investigated modeling gear tooth profiles with
two [Tan et al. 2017] or three [Gao et al. 2014; Zhang et al. 2019] pairs
of conjugate curves for high-performance gear transmission, and
found that increasing the number of contact points (i.e., conjugation
points) helps to reduce the maximum contact stress and to increase
the load capacity.
All the above works explore varying conjugations between a

conjugate curve/surface pair to model gears with new tooth pro-
files, assuming that the gears still perform the conventional motion
transmission task (i.e., transferring 1-DOF rotation to another 1-
DOF rotation). Compared with these works, our work makes use of
multi-point conjugation between a conjugate surface pair to transfer
complex motions, i.e., transferring 1-DOF rotation to a motion in
N -DOF, N ∈ [1, 3] motion space.

3 PROBLEM STATEMENT AND OVERVIEW
Our problem is to model a 2-moving-part mechanism for exactly
generating a user-specified motion, driven by a single actuator. The
user-specified motion is a periodic 3D motion, represented by a set
of sequential rigid-body poses. To achieve the goal of motion gen-
eration, the 2-moving-part mechanism has to satisfy the following
two requirements:

(1) Working mechanism. The 2-moving-part mechanism should be
a working mechanism, where the driver is able to transfer its
motion to the follower continuously, without collision or losing
contacts.

(2) Fabricable mechanism. The geometry of each component part in
the mechanism should be fabricable, e.g., by 3D printing. Thin
or sharp geometric features should be avoided for each part.

Multi-point conjugation mechanisms. We model the 2-moving-
part mechanism as a multi-point conjugation mechanism; see Fig-
ure 2 for an example. In a mpcMech, there are three mechanical
parts in total:

• Driver. The driver part performs the input motion from a hand
crank or a motor, which is always a periodic 1-DOF rotational
motion.

Fig. 2. An example multi-point conjugation mechanism (mpcMech_3R),
where the follower-support joint is a spherical joint, allowing 3-DOF rotation
of the follower.

• Follower. The follower part performs the motion specified by
users. An end-effector is attached with the follower to output the
motion, e.g., for accomplishing some tasks.

• Support. The support part is static and holds both the driver and
the follower.
There are three mechanical joints in the mechanism:

• Driver-support joint. The driver-support joint is a revolute joint
that enables the 1-DOF rotational motion of the driver.

• Follower-support joint. The follower-support joint defines the mo-
tion space of the follower. For example, if the follower-support
joint is a spherical joint, the motion space of the follower is the
3-DOF rotational motion space.

• Driver-follower joint. The driver-follower joint is amulti-point con-
jugation joint, maintaining multiple conjugation points between
the driver and the follower during any instant of motion.
Among the parts and joints in the mechanism, the driver-follower

joint or the multi-point conjugation joint is the core component
since it determines how the input motion of the driver is transferred
to the output motion of the follower. We explain how to model the
multi-point conjugation joint in Section 5.

Classification of multi-point conjugation mechanisms. We classify
multi-point conjugation mechanisms according to the follower mo-
tion type allowed by the follower-support joint. We name each
class of mpcMech as mpcMech_NRRNT T, where NR and NT are
the number of DOFs for rotation and translation of the follower
motion space, respectively. For example, mpcMech_3R represents
mpcMechs whose follower motion is in 3-DOF rotational motion
space. In this paper, we focus onmodeling three classes ofmpcMechs,
i.e., mpcMech_1R,mpcMech_1R1T, andmpcMech_3R, whose follower-
support joint is a revolute joint, cylindrical joint, and spherical joint,
respectively; see Figure 10.

Overview of our approach. It should be pointed out that multiple
conjugation points between a pair of conjugate surfaces are neces-
sary but not sufficient to form a working multi-point conjugation
mechanism. Thus in Section 4 we further develop a dynamic form
closure condition, under which one conjugate surface (the driver)
is able to continuously transfer the motion to the other conjugate
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surface (the follower) via utilizing multiple conjugation points. This
is achieved by establishing a connection between conjugate sur-
face pairs and form-closure grasps. In Section 5, we propose an
optimization-based approach to model the geometry of a multi-
point conjugation mechanism to generate a user-specified motion
while ensuring that the mechanism is workable and fabricable.

4 THEORIES OF MULTI-POINT CONJUGATION
MECHANISMS

In our 2-moving-part mechanism, it is necessary that the two mov-
ing parts always maintain point contacts for transferring relative
motion between them. However, maintaining point contacts does
not guarantee that one moving part is able to transfer the motion
to the other moving part continuously, without relying on friction;
see the middle example in Figure 3. Existing theory of conjugate
surfaces provides fundamental requirements for maintaining point
contacts (i.e., point conjugation) between a pair of surfaces. By mak-
ing a connection with form-closure grasps in robotics, we propose
a new condition under which one conjugate surface is able to con-
tinuously transfer the motion to the other conjugate surface. In this
section, we first review the existing theory of conjugate surfaces
(Section 4.1) and the existing theory of form-closure grasps (Sec-
tion 4.2), and then we present our theory of dynamic form closure
(Section 4.3).

4.1 Theory of Conjugate Surfaces
The theory of conjugate surfaces [Chen 1978] deals with a common
problem in mechanical processing and mechanical transmissions,
i.e., the problem of mutual transformation between conjugate ge-
ometry and conjugate motion. We review the theory of conjugate
surfaces below.
Assume that there are two surfaces S1 and S2, and a reference

space R. Let the motions of surfaces S1 and S2 relative to the space R
be represented by ϕ1 and ϕ2 respectively. If surface S1 (with motion
ϕ1) pushes S2 to perform motion ϕ2, then surfaces S1 and S2 are
called “conjugate surfaces” under “conjugate motions” ϕ1, ϕ2. The
entire set of instantaneous contacting points within space R forms
the locus surface/curve p. Theory of conjugate surfaces deals with
the intrinsic relationships among S1, S2, p, ϕ1, ϕ2 [Chen 1978, 1985].
The contact entity between a pair of conjugate surfaces may be

a point, a line segment, or a surface patch [Chen and Chen 1994].
Accordingly, conjugate pairs are classified into 3 types, i.e. point
conjugation type, line conjugation type,
and surface conjugation type. Tradition-
ally, the former two types are called
higher pairs, while the latter type is called
the lower pair. However, in fact, the fun-
damental type is the point conjugation
type, while the line and surface conjuga-
tion types are its degenerate cases. For the point conjugation type
(see the inset), four fundamental conditions [Chen 1978] should be
satisfied:

(1) Coincide contact point. The contact point (i.e., conjugation point)
p1 on surface S1 and the contact point p2 on surface S2 must

Fig. 3. Diagram that shows the relation among conjugate surfaces (grey
region), mechanisms that maintain continuous contact (yellow region), and
mechanisms that satisfy the dynamic form closure condition (green region).
We here show a 2D example for each of them.

coincide with each other:

p1 = p2. (1)

(2) Coincide contact normal. Two conjugate surfaces must be tan-
gent with each other at the contact point p1 in order to avoid
mutual interference at the point, i.e., coincident surface normal
but opposite in direction:

n1 = −n2. (2)

(3) Relative velocity. Relative velocity v12 at the contact point p1
must be perpendicular to the common normal n1 to ensure
continuous contact between the two conjugate surfaces:

n1 · v12 = 0, (3)

where the relative velocity v12 = v1 − v2, and v1 and v2 are the
velocity of point p1 and p2 in the space R, respectively.

(4) Induced normal curvature. Induced normal curvature Kτ of the
two conjugate surfaces, along any tangential direction τ at the
contact point p1, should be positive or zero, to avoid interference
between the two surfaces in differential neighborhood around
the contact point p1:

Kτ ⩾ 0. (4)

The point conjugation type can be further classified as single-
point and multi-point conjugation. For single-point conjugation,
two conjugate surfaces keep in contact with each other only at
a single point at any instant of motion. Single-point conjugation
allows a relative motion with high degrees of freedom between
a pair of conjugate surfaces [Chen and Chen 1994]. Multi-point
conjugation is able to reduce the DOFs of relative motion between
a pair of conjugate surfaces by using multiple contact points at any
instant of the motion, thus serving potentially as a key element in
the design of innovative precision mechanisms [Chen 1997].
Multi-point conjugation is a necessary but not sufficient condi-

tion for modeling a pair of conjugate surfaces as a 2-moving-part
mechanism. This is because in a 2-moving-part mechanism, the
input motion of the driver should always drive the output motion of
the follower at any time. In other words, at any configuration of the
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conjugate pair, if we fix the pose of the driver surface, the follower
surface should be fully immobilized by the contact points between
the two surfaces. This instantaneous configuration of the driver and
the follower is similar to a form-closure grasp in robotics, where a
gripper fully immobilizes an object based on multiple contact points
between them.

4.2 Theory of Form-Closure Grasps
In robotics, the most fundamental requirements for grasping and
dexterousmanipulation are the abilities to hold an object and control
its position and orientation relative to the palm of the hand. Form
closure and force closure are two most useful characterizations of
grasp restraint [Prattichizzo and Trinkle 2016]. Form closure refers
to a theoretical stable state where a set of stationary contacts fully
immobilize a rigid body, without relying on friction. Form-closure
grasps are widely used in robotics since they are very secure.
Specifically, first-order form closure can be established based

only on the contact locations and the contact normals, without
considering the contact curvature. First-order form closure requires
at least 4 point contacts for a 2D rigid body (see Figure 4 (left) for an
example) and at least 7 point contacts for a 3D rigid body [Somov
1897a,b]. Lakshminarayan [1978] generalized this to prove thatnv+1
contacts are necessary to form close an object with nv DOFs. For
example, a pinned 2D rigid body hasnv = 1DOF; to fully immobilize
the body, at leastnv+1 = 2 contact points are necessary; see Figure 4
(right) for an illustration.

Assume that there is a 3D rigid body with infinitesimal rigid
motion. We express the infinitesimal rigid motion of the body using
the generalized velocity u = [v⊤,ω⊤]⊤ ∈ R6, where v is the linear
velocity andω is the angular velocity. Without loss of generality, we
assume that the generalized velocity has a unit norm, i.e., ∥u∥ = 1.
Assume that there are K contact points {pk }, k ∈ [1,K], on the
surface of the body applied by a gripper. Denote the unit surface
normal of the body (with inward direction) at point pk by nk ; see
Figure 4. Both the contact point pk and the contact normal nk are
defined in the local frame of the rigid body. The set of infinitesimal
rigid motion of the body restrained by contact point pk with normal
nk is represented as:

Uk = {u | n̂k · u < 0}, k ∈ [1,K]

n̂k =

[
nk

pk × nk

]
,

(5)

where n̂k is the generalized normal of contact point pk with normal
nk . To fully immobilize the rigid body, all the possible motions of
the body should be restrained by the K contact points.

Hence, the condition of form closing a rigid body with nv DOFs
using K contact points is that the set of contact points and normals
{(pk , nk )} should satisfy

U ⊂

K⋃
k=1

Uk , (6)

whereU is the infinitesimal nv -DOF motion space of the rigid body,
andUk is the motion space restrained by contact point pk with nor-
mal nk represented by Equation (5). According to [Lakshminarayan
1978], a necessary condition to fulfill Equation (6) is that the number

Fig. 4. Left: form closure of a 2D rigid body with 3 DOFs (2-DOF translation
and 1-DOF rotation) using 4 contact points. Right: form closure of a 2D
rigid body with 1-DOF rotation using 2 contact points, where the center of
the support (in gray) is the center of rotation (in red).

of contact points, K , satisfies

K ≥ nv + 1. (7)

We observe thatU ∩Uk = ∅ if and only if n̂k ⊥ U , which means
that the contact point pk with normal nk does not contribute to
restraining the rigid body’s motion. To avoid this case, we require

n̂k ̸⊥ U . (8)

The inset shows a counter example. The pinned rigid body can rotate
clockwise or counterclockwise along the z-axis. Hence, its motion
space isU = {(0, 0, 0, 0, 0,−1)⊤, (0, 0, 0, 0, 0, 1)⊤}. The point p1 and
its normal n1 are colinear. Hence, the gen-
eralized normal is n̂1 = [n⊤1 , 0]

⊤. It is ob-
vious that n̂1 ⊥ U in this counter exam-
ple. Figure 4 shows two examples of form-
closure grasps that meet the form closure
condition, where each contact point sat-
isfies Equation (8).

4.3 Theory of Dynamic Form Closure
To continuously transfer motion from one conjugate surface (driver
surface) to the other (follower surface), the driver surface should
dynamically form close the follower surface based on the multiple
conjugation points between them at any instant of motion; see
the bottom example in Figure 3. We call this condition dynamic
form closure, and formulate it by extending the (static) form closure
condition in Section 4.2.

Assume that the driver and follower form a conjugate surface pair
that performs periodic motions with motion period T . The driver
surface and the follower surface always maintain K conjugation
points at any time t ∈ [0,T ), where each conjugation point satisfies
the four conditions given in Section 4.1. The position and normal
of each conjugation point at time t are denoted by pk (t) and nk (t),
k ∈ [1,K], respectively. According to Equation (5), the restrained
motion set by the conjugation point pk (t)with normal nk (t) at time
t is

Uk (t) = {u | n̂k (t) · u < 0}, k ∈ [1,K], t ∈ [0,T )

n̂k (t) =

[
nk (t)

pk (t) × nk (t)

]
,

(9)

where the restrained motion set Uk (t) is a 5-dimensional semi-
hypersphere in R6.
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Theory of dynamic form closure. In order for a driver surface to
form close a follower surface at any time t ∈ [0,T ), the set of K
conjugation points with normals denoted as {(pk (t), nk (t))} should
satisfy:

U ⊂

K⋃
k=1

Uk (t), ∀t ∈ [0,T ), (10)

where U is the infinitesimal N -DOF motion space of the follower
surface, and Uk (t) is the motion space restrained by conjugation
point pk (t) with normal nk (t) at time t represented by Equation (9).
Similar to Equation (7), the number of conjugation points, K ,

should satisfy
K ≥ N + 1, (11)

where N is the number of DOFs of the follower-support joint.
Similar to Equation (8), the generalized normal n̂k (t) of each

conjugation point should satisfy

n̂k (t) ̸⊥ U , ∀t ∈ [0,T ), (12)

such that each conjugation point will contribute to form closing the
follower surface at any time t .

The follower’s motion spaceU is defined by the follower-support
joint. For a follower-support joint with N -DOF, it is clear that the
motion space U of the follower allowed by the joint is a (N − 1)-
dimensional hypersphere in R6. For example, the motion space
U for a spherical joint is a 2-sphere, and the motion space for a
revolute joint is a 0-sphere. The dynamic form closure condition
in Equation (10) can be understood as a requirement of covering
a (N − 1)-dimensional hypersphere U by K 5-dimensional semi-
hypersphere {Uk (t)}. Under Equation (12), Equation (10) can be
reformulated as

0 ∈ interior
(
conv({ñk (t)}1⩽k⩽K )

)
, ∀t ∈ [0,T ), (13)

where interior(·) is the interior operator, conv(·) is a function that
computes the convex hull of a set of points, and ñk (t) is a normalized
vector that represents a projection of the generalized normal n̂k (t)
onto the linear subspace spanned by U . For example, the motion
space U for a spherical joint is U = {(0,ω⊤)⊤ | ∥ω∥ = 1}, and

ñk (t) =
pk (t) × nk (t)
∥pk (t) × nk (t)∥

. This reformulation is a generalization of

the form closure condition in [Mishra et al. 1987] and it will be used
for optimization-based modeling in Section 5.2. The supplementary
material provides a proof showing that Equation (10) is equivalent
to Equation (13).

5 MODELING OF MULTI-POINT CONJUGATION
MECHANISMS

In this section, we introduce a bottom-up approach to model the
geometry of a multi-point conjugation mechanism for exactly gener-
ating a user-specifiedmotion, starting from a single pair of conjugate
curves (Section 5.1), multiple pairs of conjugate curves (Section 5.2),
until a multi-point conjugation joint and the whole mechanism
(Section 5.3). In particular, we model the multi-point conjugation
joint as a pair of conjugate surfaces, S1 and S2, with K conjuga-
tion points. The driver surface S1 performs periodic 1-DOF rotation

Fig. 5. Modeling a conjugate curve pair c1k (t ) and c2k (t ) with conjugate
motions M1(t ) and M2(t ). We show the conjugate curve pair with two
different configurations at time (top) t0 = 0 and (bottom) t1 = 0.5T . The
small cyan curve in the middle is the locus curve pk (t ).

M1(t), and the follower surface S2 performs the user-specified mo-
tionM2(t). The motionMα (t), α ∈ {1, 2} is represented by a rigid
transformation of surface Sα relative to its local frame.

5.1 Modeling One Conjugate Curve Pair
In this section, our task is tomodel a pair of 3D conjugate curveswith
augmented normals that satisfy the point conjugation conditions in
Section 4.1. We first reformulate the point conjugation conditions
to facilitate geometry modeling, and then present an optimization-
based approach to model a conjugate curve pair that facilitates
fabrication.

Coincident contact point. The conjugate surface pair, S1 and S2,
always maintains K conjugation points at any time t ∈ [0,T ). Now,
we only consider a single conjugation point, say thek-th conjugation
point, where k ∈ [1,K]. During the conjugate motions of S1 and S2,
the k-th conjugation point forms a trajectory in the local frame of
S2, denoted by curve pk (t). At the same time, the k-th conjugation
point forms a trajectory on surface Sα , α ∈ {1, 2}, denoted by curve
cαk (t). The two curves c

1
k (t) and c

2
k (t) form a pair of conjugate curves,

with pk (t) as the locus curve; see Figure 5. The conjugate curve pair
c1k (t) and c

2
k (t) should satisfy the coincident contact point condition

(see Equation (1)) for any t ∈ [0,T ):

F21M
1(t)c1k (t) = pk (t) = M2(t)c2k (t), (14)

where F21 is the transformation (i.e., a 3D translation) on surface
S1’s local frame to make it align with surface S2’s local frame.
We assume that the geometry of each conjugate curve cαk (t) is

continuous, closed, and simple to facilitatemodeling of the conjugate
surface pair S1 and S2. To this end, we model the conjugate curve
c2k (t) as a 3D closed cubic B-spline with n control points denoted
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Fig. 6. Modeling the geometry of a conjugate curve pair. (a) Conjugate
curves that are highly curved. (b) Conjugate curve pair whose tangents have
a large angle at the conjugation point. (c) A good example of a conjugate
curve pair.

as {ec2k }, where n is set to 8 in our experiments. Given the known
conjugate motions M1(t) and M2(t), the geometry of curve c1k (t)
and curve pk (t) can be easily derived from Equation (14), and is
modeled as a polyline, respectively; see Figure 6 for examples of
conjugate curve pairs.

Coincident contact normal. We augment each point on the conju-
gate curve pair c1k (t) and c

2
k (t) with a unit normal, denoted as n1k (t)

and n2k (t), respectively. According to the coincident contact normal
condition (see Equation (2)), we have the following equation for the
conjugation point pk (t) at any t ∈ [0,T ):

− F21M
1(t)n1k (t) = nk (t) = M2(t)n2k (t), (15)

where nk (t) is the contact normal of the conjugation point pk (t) in
the local frame of surface S2.

For each of the two conjugate curves c1k (t) and c
2
k (t), it is obvious

that the contact normal should be perpendicular to the curve tangent
for any point on the curve:

n1k (t) · t
1
k (t) = 0, n2k (t) · t

2
k (t) = 0, (16)

where tαk (t), α ∈ {1, 2} is the tangent vector of conjugate curve
cαk (t). Based on Equation (15), Equation (16) can be rewritten as

nk (t) · T
1
k (t) = 0, nk (t) · T

2
k (t) = 0, (17)

where T1k (t) = F21M
1(t)t1k (t) is the tangent vector of conjugate curve

c1k (t) in the local frame of surface S2 and T2k (t) = M2(t)t2k (t) is the
tangent vector of conjugate curve c2k (t) in its local frame. According
to Equation (17), the contact normal nk (t) can be chosen as the
cross product of T1k (t) and T2k (t). However, this simple strategy
cannot guarantee continuity of contact normal nαk (t) along curve
cαk (t), which is necessary to model a conjugate surface pair that is
fabricable; see Figure 7(a) for a counter example.

To satisfy Equation (17), we assume that the contact normal nk (t)
is always perpendicular to the tangent T2k (t), i.e., nk (t) ⊥ T2k (t). At
any time t , we establish a 2-dimensional frame {Nk (t),Bk (t)} in the
normal plane of T2k (t), and then nk (t) can be expressed as

nk (t) = Nk (t) cosθk (t) + Bk (t) sinθk (t). (18)

Fig. 7. Modeling the normals of a conjugate curve pair. (a) The normals of
one conjugate curve change suddenly at one point. (b) The normal and the
curvature vector (in red color) have a large angle at the conjugation point.
(c) A good example of curve normals.

We model the set of angles {θk (t)} using a 1D closed cubic B-spline
to ensure a smooth change of the normals {nk (t)} with respect
to time t . The control points of the 1D B-spline are denoted as
{eθk } and we use 10 control points in our experiments. We satisfy
nk (t) ⊥ T1k (t) by minimizing:

Enorm =
N−1∑
i=0

(
nk (ti ) ·

T1k (ti )

∥T1k (ti )∥

)2
, (19)

where N is the number of samples for the motion period T and
ti =

i
N T , i ∈ [0,N ). In all our experiments,N is set to 360. Figure 7(c)

shows a good example of curve normals modeled by this approach.

Relative velocity. Denote the relative velocity at the conjuga-
tion point pk (t) by v12k (t). We have the following kinematic re-
lation [Litvin and Fuentes 2004]:

v12k (t) = T2k (t) − T1k (t), (20)

by taking derivatives of Equation (14); see the supplementary mate-
rial for the derivation. Based on Equations (17) and (20), the relative
velocity condition (see Equation (3)) of point conjugation is always
satisfied.

Induced normal curvature. The induced normal curvature condi-
tion (see Equation (4)) is about surface curvature. Hence, it will be
satisfied when modeling the conjugate surface pair in Section 5.3.

Optimization-based modeling. Besides the above conditions for
point conjugation, we propose three additional energy terms to
model a conjugate surface pair that is fabricable and compact. First,
we require that each conjugate curve cαk (t), α ∈ {1, 2} is smooth:

Esmth =
∑
α

N−1∑
i=0

 tαk (ti+1)

∥tαk (ti+1)∥
−

tαk (ti )

∥tαk (ti )∥

2 ; (21)

see Figure 6(a) for a counter example. Second, we require that the
tangents of the two conjugate curves are close to colinear:

Etang =
N−1∑
i=0

 T1k (ti )

∥T1k (ti )∥
−

T2k (ti )

∥T2k (ti )∥


2

; (22)
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see Figure 6(b) for a counter example. Third, we require that the
two conjugate curves are close to co-planar:

Eplan =
N−1∑
i=0

nk (ti ) − κ2k (ti )

∥κ2k (ti )∥


2

, (23)

where κ2k (t) is the curvature vector of conjugate curve c
2
k (t); see

Figure 7(b) for a counter example.
We formulate the problem of modeling a conjugate curve pair

c1k (t) and c
2
k (t) with augmented normals n1k (t) and n

2
k (t) as an opti-

mization problem:

min
{ec2k

}, {eθk }
Ek = ω1Esmth + ω2Etang + ω3Enorm + ω4Eplan,

s.t. L1 ⩽ Length(c2k (t)) ⩽ L2,
(24)

where the conjugate curve pair’s shape is parameterized by {ec2k
}

and the conjugate curve pair’s normals are parameterized by {eθk }.
The constraint on the length of the conjugate curve c2k (t) controls
the size of the follower surface, and we set L1 = 4π and L2 = 6π in
our experiments. The weights are typically set as ω1 = 50, ω2 = 1.0,
ω3 = 100, and ω4 = 1.0. We solve this constrained optimization
problem using the sequential least squares programming algorithm
(SLSQP) [Kraft 1988] implemented in the NLopt package [Johnson
2020], where the conjugate curve c2k (t) is initialized as a circle-like
curve due to its simplicity.

5.2 Modeling K Conjugate Curve Pairs
In this section, our task is to model K 3D conjugate curve pairs
{c1k (t), c

2
k (t)} with augmented normals {n1k (t), n

2
k (t)}, k ∈ [1,K].

The conjugate curves {c1k (t)} perform the input motion M1(t), and
will be used to model the driver surface S1. The conjugate curves
{c2k (t)} perform the output motionM2(t), and will be used to model
the follower surface S2. To ensure a working mechanism, the K
conjugate curve pairs with augmented normals should satisfy the
dynamic form closure condition in Section 4.3. To ensure a fabricable
mechanism, the K conjugate curve pairs should be laid out in the
3D space without intersection. We formulate this modeling problem
as an optimization and introduce its search space, optimization
formulation, and solver.

5.2.1 Search Space. The search space of modeling K conjugate
curve pairs includes:

(1) Position of driver surface S1 relative to follower surface S2. This
relative position is described by the 3D translation represented
by F21. In particular, we assume that driver surface S1 and fol-
lower surface S2 are aligned in they−axis and z−axis of the local
frame of S2; see Figure 5. By this, we describe the relative posi-
tion using a single parameter dx , which is the distance between
the driver axis and the follower-support joint center.

(2) Number of conjugate curve pairs K . We assume that each pair
of conjugate curves has a single conjugation point. Hence, the
number of conjugate curve pairs is the same as the number of
conjugation points. According to Equation (11), the number of

Fig. 8. Two examples of K conjugate curve pairs modeled by our approach
that (top) does not satisfy and (bottom) satisfies the dynamic form closure
condition. (Left) One configuration of the K conjugate curve pairs at time tc .
(Middle) Visualization of dist(t ), where the red dot shows dist(tc ). (Right)
Visualization of the convex hull conv({ñk (tc )}1⩽k⩽K ) (in red) and the origin
(in green) for the configuration in the projection space.

conjugation points, K , should satisfy K ≥ N + 1, where N is the
number of DOFs of the follower-support joint.

(3) Geometry of K conjugate curve pairs {ec2k
}. The geometry of

each conjugate curve pair is parameterized by control points
ec2k

of the conjugate curve c2k (t), k ∈ [1,K]; see Section 5.1.

(4) Normals of K conjugate curve pairs {eθk }. The normals of each
conjugate curve pair are parameterized by control points eθk of
the set of angles {θk (t)}, k ∈ [1,K]; see Section 5.1.

5.2.2 Optimization Formulation. We introduce the objective func-
tion and constraints of modeling K conjugate curve pairs, where
the K conjugation points with normals are {(pk (t), nk (t))}.

Objective function. According to the theory of dynamic form clo-
sure in Section 4.3, the set of K conjugation points with normals
{(pk (t), nk (t))} has to meet Equation (13) such that the follower
surface can be fully immobilized by the driver surface at any time
t . Denote the signed distance from the origin 0 to the surface of
convex hull conv({ñk }1⩽k⩽K ) at time t by:

dist(t) = dist(0, conv({ñk (t)}1⩽k⩽K )). (25)

We consider that theK pairs of conjugate curves satisfy the dynamic
form closure condition at time t if the signed distance dist(t) is less
than a tolerance −ϵ :

E(t) =

{
1, if dist(t) < −ϵ .

0, otherwise.
(26)

where we set ϵ = 0.02 in our experiments.
Our objective function evaluates how well the dynamic form clo-

sure condition is satisfied using two terms. The first term evaluates
if the dynamic form closure condition is satisfied for the whole

ACM Trans. Graph., Vol. 43, No. 6, Article 211. Publication date: December 2024.



mpcMech: Multi-Point Conjugation Mechanisms • 211:9

Fig. 9. Modeling a multi-point conjugation mechanism. (a) Given the user-specified motionM2(t ), (b) we first model K conjugate curve pairs with augmented
normals to generate the motion. Next, we (c) model a conjugate surface pair that passes through the conjugate curve pairs as a multi-point conjugation joint
and (d) ensure both the driver surface and follower surface form a piece of connected geometry, respectively, for fabrication. (e) Lastly, we model the support,
the driver-support joint, and the follower-support joint.

motion period T :

EvaliTime =
1
N

N−1∑
i=0

E(ti ). (27)

The second term evaluates the worst case of satisfying the dynamic
form closure condition over the motion period T :

EmaxDist = max
i

dist(ti ). (28)

This term is inspired by the grasp quality measure in [Cornellà and
Suárez 2009]. Figure 8 shows two examples of K conjugate curve
pairs as well as their evaluation.

In our formulation, EvaliTime and EmaxDist serve a redundant pur-
pose for the satisfaction of the dynamic form closure condition. In
particular, EvaliTime = 1 and EmaxDist ≤ 0 when the condition is
satisfied. Although this formulation works well in practice, it is not
the only way to formulate the problem.

Constraints. Our optimization has two constraints. First, accord-
ing to Equation (12), the generalized normal should not be perpen-
dicular to the motion spaceU for each conjugate curve pair. Hence,
we introduce the constraint:

Cclosure = C(nk (t), pk (t),U ) ⩽ 0, k ∈ [1,K]. (29)

For mpcMech_3R, the constraint is equivalent to avoiding nk ×pk =
0. Hence, the constraint expression can be written as:

Cclosure =

(
nk (t) ·

pk (t)
∥pk (t)∥

)2
− cos2(γ0 +

π

2
), (30)

where γ0 is a threshold set as 10◦ in our experiments. We apply a
similar treatment of Cclosure for mpcMech_1R and mpcMech_1R1T;
see the supplementary material for details.

The second constraint is to avoid intersection among the K con-
jugate curve pairs {c1k (t), c

2
k (t)} such that there is no interference

among the K conjugation points at any time t . This constraint is
formulated as:

zmin
k ⩽ c2k (t).z ⩽ zmax

k , k ∈ [1,K], ∀t ∈ [0,T ), (31)

where c2k (t).z is the z-coordinate of the conjugate curve c
2
k (t) in its

local frame, and the ranges {[zmin
k , z

max
k ]} are disjoint equal-length

segments along the z axis for k ∈ [1,K].

5.2.3 Optimization Solver. To solve the optimization problem, we
first solve for the geometry {ec2k } and normals {eθk } of K conjugate
curve pairs, assuming the relative position (dx ) of the driver surface
and the number (K ) of conjugate curves are given. Next, we explain
how to solve K and dx . The details of our optimization solver are
provided in the supplementary material.

Solving for {ec2k
} and {eθk }. The key challenge of solving for the

geometry {ec2k
} and normals {eθk } of K conjugate curve pairs is

that they have to satisfy various requirements in Sections 5.1 and 5.2.
To address the problem, our idea is to first generate a variety of
candidates for each of the K conjugate curve pairs by solving the
optimization in Equation (24) augmented with two constraints of
Equations (29) and (31), and then use a genetic algorithm to combine
these candidates guided by the two objective terms in Equations (27)
and (28) to find a solution of K conjugate curve pairs that satisfy
the dynamic form closure condition. To ensure diversity of the
generated candidates of conjugate curve pairs, we add one more
energy term Evary to the objective function in Equation (24); see the
supplementary material for details.

Solving for K and dx . According to our theory of mpcMechs in
Section 4.3, at least N + 1 conjugate curve pairs are necessary to
generate a motion in N -DOF motion space. To obtain a compact
mechanism, the number (K) of conjugate curve pairs should be as
small as possible. Hence, we start by trying to find a solution with
K = N + 1 conjugate curve pairs using the above algorithm. If we
cannot find such a solution, we increase K by one until we find a
feasible solution. dx is used to determine a suitable size of the driver
surface, given that the follower surface size has been constrained
by requiring the length of the conjugate curve c2k within a user-
specified range [L1, L2] in Equation (24). On the one hand, the driver-
follower distance (dx ) should be large enough to model the driver
surface for encoding the prescribed motion. On the other hand, dx
should not be too large to keep the resulting mechanism compact.
Hence, we search for a suitable value of dx by starting from a small
value (set empirically) and gradually increasing it until finding a dx
that results in a working and compact mechanism. Alternatively,
the value of dx can be interactively adjusted [Hutama et al. 2011;
Song et al. 2014] by users until producing a desirable mechanism.
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Fig. 10. mpcMechs modeled by our approach to generate motions in different kinds of motion space: (a) 1-DOF rotation, (b) 1-DOF rotation and 1-DOF
translation, and (c) 3-DOF rotation space.

Table 1. Statistics and timings. For each result shown in the paper, we report
the mpcMech class, number (K ) of conjugate curve pairs, relative position
(dx ) of the driver surface, energy term EvaliTime, energy term EmaxDist, and
optimization time for modeling K conjugate curve pairs.

5.3 Modeling Multi-Point Conjugation Mechanisms
Modeling a multi-point conjugation joint. After obtaining the K

conjugate curves {c2k (t)}, we model the follower surface S2 by
sweeping a cross section shape along each conjugate curve c2k (t).
We select a half ellipse curve as the cross section shape and align the
ellipse’s major axis with the curve normal n2k (t) during the sweep-
ing. The sweeping along each conjugate curve results in an annular
surface, which is further made watertight by filling the hole in the
middle. The driver surface S1 is initially modeled as a swept surface
using the same approach, where the cross section is selected as a
rectangle. To avoid collision between the driver and the follower,
we progressively carve the driver’s initial shape using the follower
shape by simulating their conjugate motions for a whole motion
period. By this, we obtain the driver surface with a groove-like
joint; see Figure 9(b&c). This carving method guarantees that the
conjugate surface pair, S1 and S2, satisfies the induced normal curva-
ture condition (see Equation (4)) of point conjugation. The modeled
conjugate surface pair forms a multi-point conjugation joint.

Fig. 11. Evaluating the kinematic performance of a mpcMech_1R for gener-
ating a 1-DOF non-uniform rotational motion, where the user specification
on the timing is shown at the top left corner. (Left) Our modeled mpcMech.
(Right) The 3D printed prototype.

Finalizing geometry modeling of the mpcMech. Until now, both
the driver surface and the follower surface are a piece of geometry
with disconnected parts, respectively, which cannot be directly fab-
ricated. Hence, we make the driver surface connected by connecting
its parts using a cylinder centered at the driver’s rotation axis. We
make the follower surface connected by connecting each pair of its
consecutive parts using a thickened polyline with three linear seg-
ments, while ensuring that the thickened polyline does not collide
with the driver surface during the conjugate motion; see Figure 9(d).
We finalize the mechanism modeling by adding the driver-support
joint to the driver surface, adding the follower-support joint to the
follower surface, and modeling the support part as a few pillars
(connected at the bottom) that hold the driver and follower; see
Figure 9(e).

6 RESULTS
We implemented our mpcMech modeling approach in C++ and
libigl [Jacobson et al. 2018] on a MacBook with a 3.2GHz CPU
and 16GB memory. We show that our approach is able to model
mpcMechs with different kinds of motions (Figure 10), evaluate
kinematic performance of our modeled mpcMechs with 3D printed
prototypes (Figures 11 and 12), demonstrate the usefulness of our
mpcMechs with three applications (Figures 1, 13, and 14), and com-
pare our mpcMech with a conventional mechanism to show its
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Fig. 12. Evaluating the kinematic performance of a mpcMech_3R for generating a 3D motion (see the inset in the next page). (Top) Four key poses generated by
our modeled mpcMech from the front and side views, where the leftmost one shows the first key pose. (Bottom) The 3D printed prototype in the corresponding
configurations and views.

characteristics in terms of motion generation (Figures 15). Please
watch the accompanying video for demos. Table 1 presents statistics
of all the results shown in the paper. Overall, modeling a mpcMech
takes from 5 mins to 24 mins.

Modeling mpcMechs of different classes. Figure 10 shows 3 classes
of mpcMechs modeled by our approach, including mpcMech_1R,
mpcMech_1R1T, and mpcMech_3R. We observe that there is a larger
number of conjugate curve pairs in the modeled mpcMech when the
follower’smotion space has a higher DOF; see also Table 1.Moreover,
the number (K ) of conjugate curve pairs computed by our approach
is slightly larger than the minimum number of conjugate curve pairs
required by the dynamic form closure condition (Equation (11)). For
example, the modeled mpcMech_1R has 3 conjugate curve pairs,
given that the minimum number is 2; the modeled mpcMech_1R1T
has 4 conjugate curve pairs, given that the minimum number is 3.

Evaluation of kinematic performance. We conducted two physical
experiments to evaluate the kinematic performance of two different
classes of mpcMechs (i.e., mpcMech_1R and mpcMech_3R). In each
experiment, we model a mpcMech to generate the specified motion
and fabricate the mpcMech with 3D printing using an Ultimaker

S5 printer with tough PLA material; see Figures 11 and 12. We
have two goals in these experiments. The first goal is to validate
if our modeled mpcMech is a working mechanism in which the
driver is able to continuously transfer the motion to the follower
via the multi-point conjugation joint. The second goal is to evaluate
if the motion generated by the physical mechanism is identical to
the virtual counterpart. Please watch the accompanying video for
demos of the two experiments.
In the first experiment, we design a mpcMech_1R to transfer a

1-DOF uniform rotation to a 1-DOF non-uniform rotation; see Fig-
ure 11. The specifiedmotion is a 1-DOF non-uniform rotation, where
the follower rotates slowly in the first half circle (θ ∈ [0◦, 180◦])
and fast in the second half circle (θ ∈ [180◦, 360◦]). In particular,
the timing of the first half circle is two times of the timing of the
second half circle. We model a mpcMech_1R that exactly generates
the prescribed motion. In our physical test, we found that the driver
is able to drive the motion of the follower continuously. Moreover,
while making the driver rotate uniformly, we record the timings
that the follower rotates within the two half circles, respectively.
The timing ratio between the first half circle and the second half
circle is close to 2, matching the user specification.
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Fig. 13. A paddling mechanism modeled as a mpcMech using our approach for driving a boat.

Fig. 14. A mechanical toy in which a mpcMech is modeled by our approach to control the flying motion of a helicopter.

In the second experiment, we model a mpcMech_3R to generate
a user-specified 3D motion; see Figure 12. The target motion is
specified as an eight-like curve on a spherical surface with four key
poses at the two ends and middle of the curve; see the inset. To
visualize the output motion, the end-effector is modeled as a box
with four attached spheres of
different colors. In our physical
test, we found that the driver
is able to continuously transfer
motion to the follower, despite
that the output motion is 3D and complex. We compare the four
key poses generated by the virtual and physical mpcMechs in two
different views, and find that they are identical to each other. For
example, for both the virtual and physical results, we only see the
front face of the end-effector cube in the 1st and 3rd key poses,
and see the front face and one side face on the left (right) of the
end-effector cube in the 2nd (4th) key pose; compare the 1st row
and the 3rd row in Figure 12.
In these two experiments, the two physical prototypes function

well for transferring motions, validating our dynamic form closure
condition that transforms a conjugate surface pair into a working 2-
moving-part mechanism. Moreover, the two physical prototypes are
able to generate user-specified motions, demonstrating that these
mechanisms can be used in practice. Note that the two fabricated

examples are relatively simple and do not operate smoothly which
may be caused by fabrication tolerances and friction. We consider
fabrication of well-functioning complex mpcMechs as future work.

Applications. We show that our mpcMech can be used for three
different applications, i.e., low-cost manipulator, paddling mech-
anism, and mechanical toy. In all these applications, we model a
mpcMech_3R to generate a user-specified 3D motion. First, our
mpcMech can be used as a low-cost manipulator driven by a single
actuator to perform a pick-and-place task repetitively; see Figure 1.
In this application, the task is to pick a box from the floor, manipu-
late the box, and place it on a table. The prescribed motion is more
than a simple 3D translation since the box has to be flipped during
the pick-and-place; see Figure 1 (right) for the motion trajectory and
three key poses. Second, our mpcMech can be used as a paddling
mechanism, where two paddles are connected to the two ends of
the follower, respectively; see Figure 13. Simply by actuating the
driver, the follower is able to perform a repetitive paddling motion
to drive a boat. Third, our mpcMech can be used for designing me-
chanical toys. We show an example mechanical toy modeled by
our approach, where a helicopter is connected to the follower and
performs an intriguing flying motion; see Figure 14. In this example,
the mpcMech is put in an orientation where the driver rotation axis
is perpendicular to instead of parallel with the ground. Thanks to
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Fig. 15. Comparing (right) our mpcMech with (left) a spherical four-bar
linkage [Sun et al. 2016] for 3D motion generation.

its dynamic form closure property, our mpcMech can work under
different orientations.

Comparison with a spherical 4-bar linkage. Spherical motions are
motions in 3-DOF rotational motion space. Spherical motions occur
frequently in mechanical systems such as orienting mechanisms
and robotic wrists. Spherical 4-bar linkage is one of the most widely
used mechanisms for generating spherical motions [Bai et al. 2019].
Sun et al. [2016] designed a spherical 4-bar linkage to generate
a spherical motion; see Figure 15 (left). We modeled a mpcMech
that generates the same path as the spherical linkage but different
rotational motions along the path; see Figure 15 (right). In particular,
the end-effector poses are similar along the path for the spherical
linkage while the end-effector poses have significant changes along
the path for the mpcMech; see the sampled poses in Figure 15. Due
to this difference, our mpcMech complements spherical linkages in
terms of 3D motion generation.

Discussion. Compared with traditional mechanisms like spatial
linkages, one strength of our mpcMech is that it is able to exactly
generate a prescribed motion. However, this does not mean that our
approach is able to model a mpcMech to exactly generate an arbi-
trary prescribed motion. In particular, when the prescribed motion
is too complex, our approach may fail to model such a mpcMech.
This is because the conjugate curve pairs likely have complex ge-
ometry due to the complex prescribed motion, which may make
modeling of a fabricable conjugate surface pair fail.

7 CONCLUSION
We have presented a new class of mechanisms called multi-point
conjugation mechanisms (mpcMechs). Our mpcMech consists of
two moving parts, a driver and a follower, and it relies on a multi-
point conjugation joint to transfer motion from the driver to the
follower. Our aim is to understand and model mpcMechs for 3D
motion generation. We solve this problem via proposing a dynamic
form closure condition that transforms a conjugate surface pair
into a working mpcMech. We also propose an optimization-based
approach to model a mpcMech for generating a user-specified 3D
motion, particularly in 3-DOF motion space. As evidenced by the
wide range of mpcMechs that we modeled, our method achieves this
goal. Our work advances the state-of-the-art in mechanism design

by showing a successful attempt of encoding complex motions into
the free-form geometry of novel mechanismsmodeled as a conjugate
surface pair.

Future work. We see several exciting avenues for future work.
First, our current work focused on the geometry and kinematics
of mpcMechs, and ignored dynamics. One important future work
is to model the dynamics of mpcMechs, which will be useful for
predicting how much workload the mechanism can carry in prac-
tice. Second, we have shown that our mpcMech alone can perform
complex motions to accomplish functional tasks. This capability can
be further extended by combining mpcMechs with other mecha-
nisms such as high-pair linkages [Song et al. 2017] and non-circular
gears [Xu et al. 2020]. Third, we assume that the input motion of
a mpcMech is 1-DOF periodic rotation. In the future, we plan to
generalize mpcMechs to support input motion with multiple DOFs
(i.e., multiple drivers). By this, the generalized mpcMech will be able
to perform varying dexterous tasks by controlling multiple DOFs
of the input motion. Last but not least, we plan to explore more
applications of our mpcMechs in engineering and robotics, such
as animatronic eye mechanisms, reconfigurables [Tang et al. 2019],
and legged locomotion.
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