
Supplementary Material for
mpcMech: Multi-Point Conjugation Mechanisms

This supplementary material is composed of four parts. The
first part presents a proof to the equivalence of the dynamic
form closure condition (see Section 4.3 in the paper). The
second part shows the process to prove the kinematic rela-
tion about relative velocity from the coincident contact point
condition (see Section 5.1 in the paper). The third part pro-
vides details about how to avoid the case that the generalized
normal is perpendicular to the follower’s motion space (see
Section 5.2 in the paper). The last part provides details of
our optimization solver (see Section 5.2 in the paper).

1 Dynamic Form Closure Condition
In the paper we present the condition of the dynamic form
closure:

U ⊂
K

⋃
k=1

Uk(t), ∀t ∈ [0, T ]. (1)

This condition can be understood as a requirement of cov-
ering a (N − 1)-dimensional unit hypersphere U by K 5-
dimensional unit semi-hypersphere {Uk(t)}1⩽k⩽K with the
corresponding generalized normal {n̂k(t)}1⩽k⩽K . If n̂k(t) /⊥
U , then we can define ñk(t), which is a normalized vector
that represents a projection of the generalized normal n̂k(t)
onto the linear subspace spanned by U . Thus the equation 1
can be again viewed as a requirement of covering a (N − 1)-
dimensional unit hypersphere U by K (N − 1)-dimensional
unit semi-hypersphere with center point −ñk(t). In the pa-
per we claim that equation 1 is equivalent to:

0 ∈ interior (conv({ñk(t)}1⩽k⩽K)) , ∀t ∈ [0, T ]. (2)

This equivalence can be easily derived from the following
proposition:

Proposition 1 Sn = {u ∈ Rn+1 ∣ ∥u∥ = 1} is a n-dimensional
unit hypersphere. {Hk}1⩽k⩽K is a set of K n-dimensional
unit semi-hypersphere with center point sk, namely, Hk =
{u ∈ Rn+1 ∣ ∥u∥ = 1,u ⋅ sk > 0}. Sn is covered by these K
semi-hypersphere, that is,

Sn ⊂
K

⋃
k=1

Hk,

if and only if 0 ∈ interior (conv({sk}1⩽k⩽K)).

Proof 1 (⇐) ∃ a hyperball Br(0) ⊂ conv({sk}Kk=1), then for

∀u ∈ Sn, ∥u∥ = 1, we have r

2
u ∈ Br(0), thus r

2
u =

K

∑
k=1

λksk,
K

∑
k=1

λk = 1, λk ⩾ 0. Then

r

2
∥u∥2 =

K

∑
k=1

λk(sk ⋅ u).

Assume sk ⋅u ⩽ 0, for ∀1 ⩽ k ⩽K, then the right of the above
equation is nonnegative, but the left is positive, contradic-
tion. Therefore ∃1 ⩽ k ⩽ K, sk ⋅ u > 0, that means Sn is
covered by these K semi-hypersphere.

(⇒) conv({sk}1⩽k⩽K) is convex, so its interior set
int (conv({sk}1⩽k⩽K)) is convex. We denote its interior set
as I.

Assume that 0 ∉ I, according to Separating Hyperplane The-
orem, there exists a hyperplane a⊺x+ b = 0 separate 0 and I,
that is,

{a
⊺0 + b ⩾ 0,

a⊺x + b ⩽ 0,∀x ∈ I,

Thus ∀x ∈ I, we have a⊺x ⩽ −b ⩽ 0. Then it can be easily
known that a⊺x ⩽ 0, ∀x ∈ conv({sk}1⩽k⩽K). Set x = sk,1 ⩽
k ⩽K, we have a⊺sk ⩽ 0, so a

∥a∥
∈ Sn is not covered by each

Hk, contradiction.

2 Relative Velocity Condition for Point Con-
jugation

In the paper, we have the coincident contact point condition:

F2
1M

1(t)c1k(t) = pk(t) =M2(t)c2k(t) (3)

where c1k(t) and c2k(t) are the conjugate curve pair in the
local frame, M1(t) and M2(t) are their respective motion,
and F2

1 is the transformation (i.e., a 3D translation) of sur-
face S1’s local frame to surface S2’s local frame. Taking
derivatives of Equation 3, we have

F2
1Ṁ

1(t)c1k(t) +F2
1M

1(t)ċ1k(t) = Ṁ2(t)c2k(t) +M2(t)ċ2k(t),
(4)

namely,
v1
k(t) +T1

k(t) = v2
k(t) +T2

k(t), (5)
where vα

k (t) is the velocity at the conjugation point of cαk (t)
in the global frame and Tα

k (t) is the tangent vector at the
conjugation point of cαk (t) in the global frame. Therefore,
the relative velocity v12

k (t) ∶= v1
k(t)−v2

k(t) = T2
k(t)−T1

k(t).

3 Constraint of Avoiding n̂k(t) /⊥ U
From our theory of dynamic form closure in the paper, we
know that if the generalized normal n̂k(t) is perpendicular
to the motion set U , the kth conjugate curve pair fails to
contribute to form close the follower surface at time t. So
we have to take strategy in our optimziation solver to avoid
this case. And In our experiments we find that we need
to take different methods for different type of the follower
suppoert joint to obtain good results. We focus on 3 types
metioned in the paper: mpcMech_3R, mpcMech_1R and
mpcMech_1R1T.

For mpcMech_3R, as mentioned in the paper, ñk(t) =
pk(t) × nk(t)
∥pk(t) × nk(t)∥

, we need to introduce a constraint to avoid

pk(t) × nk(t) = 0:

Cclosure_3R = (nk(t) ⋅
pk(t)
∥pk(t)∥

)
2

− cos2(γ0 +
π

2
) ⩽ 0, (6)



where γ0 is a threshold set as 10○ in our experiments.

For mpcMech_1R, we assume the motion set U =
{(0,0,0,0,0,±1)⊺}. And instead of adding a constraint like
the mpcMech_3R do, we minimize:

Eclosure_1R = −∑
i

( V × pk(ti)
∥V × pk(ti)∥

⋅ nk(ti))
2

, (7)

where V = (0,0,1)⊺.

For mpcMech_1R1T, we assume the motion space U =
{(0,0, t,0,0, ω)⊺ ∣ t2 + ω2 = 1}. Similar to mpcMech_1R ,
we minimize:

Eclosure_1R1T = Eclosure_1R −∑
i

(V ⋅ nk(ti))2 . (8)

4 Solving for {ec2
k
} and {eθk}

This section gives details about how we solve for the geom-
etry {ec2

k
} and normals {eθk} of K conjugate curve pairs,

assuming the relative position (dx) of the driver surface and
the number (K) of conjugate curves are given.

we find that there are too many high-level constraints in our
optimziation problem, so it is too difficult to solve. Espe-
cially, the gradient of the form-closure condition 2 cannot
be calculated.

Therefore, our idea to first generate a variety of multi-
point conjugation joint candidates consisting of K conju-
gate curve pairs by a gradient-based optimization (we take
mpcMech_3R as an example):

min
{ec2

k
},{eθk}

Ek + ω5Evary,

s.t. Cclosure_3R ⩽ 0,
L1 ⩽ Length(c2k(t)) ⩽ L2,

zmin
k ⩽ c2k(t).z ⩽ zmax

k

(9)

where
Evary = ñk(tv) ⋅ ñk(tv + T /2). (10)

Evary helps to generate many conjugate curve pairs with dif-
ferent geometry by using different tv and ω6 = 20.0 in our
experiments. Other expressions is mentioned in Section 5.1
and 5.2 in the paper. Note that ñk for mpcMech_1R is +1 or
−1, so we discard Evary in this case. And for mpcMech_1R
or mpcMech_1R1T, we remove the constraint Cclosure_3R
and add the corresponding term Eclosure_1R or Eclosure_1R1T
to the objective function. And the coefficient ω6 of the
Eclosure_1R or Eclosure_1R1T is set 0.1 in our experiments.

To generate multi-point conjugation joint candidates, we
take M uniform distributed time sequence {tvj}1⩽j⩽M in a
whole motion period. For each tvj , we run the above opti-
mization for each k ∈ [1,K] to obtain a multi-point conju-
gation joint candidate consisting of K conjugate curve pairs
. By this, we obtain M multi-point conjugation joint candi-
dates. In our experiments, we set M = 30.

Thanks to the term Evary, the conjugate curve pairs in the
candidates are so diverse, but we can not guarantee that
there exists a candidate satisfying the dynamic form closure
condition. We observe that due to the constraint for the
z-coordinate of c2k, two multi-point conjugation joint candi-
dates can exchange the kth (1 ⩽ k ⩽ K) conjugate curve

pair to generate a new candidate. So we can enumerate all
the combinations of these M candidates and find the best
combination that minimizing EvaliTime. However, enumera-
tion is time-consuming, so we use the genetic algorithm to
find a combination of the multi-point conjugation joint can-
didates to satisfy the dynamic form closure condition. The
fitness function of the genetic algorithm is based on the two
objective functions in the paper. In detail, we consider an
individual Ii is better than another one Ij if one of the fol-
lowing condition is satisfied:

1. EvaliTime(Ii) > EvaliTime(Ij)

2. EvaliTime(Ii) = EvaliTime(Ij)&EmaxDist(Ii) < EmaxDist(Ij)

In the genetic algorithm we used, we select very common op-
erators: truncation selection, one point crossover and bit flip
mutation. We perform the above three operations NI times,
and select the best individual Ioptim in the final population
according to the fitness function. In our experiments, we set
NI = 300. If EvaliTime < 1.0 for Ioptim, we increase the num-
ber of the conjugate curve pairs to K+1 and repeat the above
process until we find a solution that satisfy EvaliTime = 1.0.


