Supplementary Material for
Inverse Tiling of 2D Finite Domains

This supplementary material is composed of seven parts. The first
part presents a proof of NP-hardness of our inverse tiling problem.
The second part analyses the search space of our prototile set con-
struction method. The third part presents the implementation details
of the prototile set construction method. The fourth part provides
additional inverse tiling results. The fifth part provides details about
the experiment that evaluates scalability of our inverse tiling ap-
proach. The sixth part provides details about the experiment for
evaluating & minimization of our inverse tiling approach. The last
part provides details about the user study for the puzzle application.

1 Proof of NP-hardness of Inverse Tiling Prob-
lem

We present a proof for NP-hardness of the inverse tiling problem for-
mally defined in Section 3 of the paper. To this end, we denote the in-
verse tiling problem as INVERSE_TILING and the decision version
of INVERSE_TILING problem as INVERSE_TILING_DECISION.
Furthermore, we choose a decision version of the forward
tiling problem denoted as FORWARD _TILING_DECISION, which
is proved to be a NP-complete problem [Horiyama et al.
2017]. To prove NP-hardness of INVERSE_TILING prob-
lem, we first prove that INVERSE_TILING_DECISION prob-
lem is NP-complete (see Section 1.1), by polynomially reduc-
ing the FORWARD_TILING_DECISION problem to it. Next,
we prove NP-hardness of INVERSE_TILING problem by show-
ing that it is an optimization problem that is harder than
INVERSE_TILING_DECISION problem (see Section 1.2).

1.1 NP-completeness of INVERSE_TILING_DECISION
The FORWARD_TILING_DECISION problem can be defined as:

FORWARD _TILING_DECISION = {(D, N, P) |
there exists IV tiles that exactly cover domain D,

where each tile is an instance of a prototile in P}.

where D is the given finite domain that needs to be tiled, N
is the given number of tiles, P is the prescribed prototile set.
The FORWARD_TILING_DECISION problem has been proved
to be NP-complete [Horiyama et al. 2017]. Next, we define
INVERSE_TILING_DECISION problem as:

INVERSE_TILING_DECISION = {(D, N, Kmax, C) |
there exists IV tiles that exactly cover domain D,
such that the number of prototiles K is smaller than Kax,

and each tile satisfies prototile size/shape constraints in C}.

where D is the given finite domain that needs to be tiled, IV is the
given number of tiles, Kmax is the maximally allowed number of
prototiles, and C' is a set of constraints on prototile size/shape, e.g.,
constraints on the number of grid cells occupied by each prototile,
bounding box size, shape connectivity and convexity, etc.

Polynomial-time Reduction from FORWARD_TILING_DECISION
to INVERSE_TILING DECISION. For each instance of
the FORWARD_TILING_DECISION problem with input
(D',N',P"), we can construct a corresponding instance
of the INVERSE_TILING_DECISION problem with input
(D, N, Kmax,C), where the input domain D = D’ and the

number of tiles N = N’ remain unchanged. The upper bound
on the number of prototiles, Kmax, can be set to N + 1, as
the FORWARD_TILING_DECISION problem does not impose
constraints on the number of prototiles used. The constraint set
C in INVERSE_TILING_DECISION can be defined to require
that all prototiles must exactly match one of the tile shapes in the
given set P'. It is straightforward to construct D, N, Kmax, and
C from the input (D', N', P') in polynomial time. In this way,
any valid solution to the INVERSE_TILING_DECISION problem
that satisfies these constraints corresponds to a valid solution
to the FORWARD_TILING_DECISION problem, establishing a
polynomial-time reduction.

1.2 NP-hardness of INVERSE_TILING

The objective of our INVERSE_TILING problem is to minimize the
number (K) of prototiles needed to exactly cover the domain D,
subject to the constraints C' on prototile size/shape, and the number
of tiles N. Our INVERSE_TILING problem is an optimization
version of INVERSE_TILING_DECISION problem since it aims to
minimize the number (K) of prototiles instead of determining if
the number (K) of prototiles is smaller than a predefined number
Kmax. According to [Garey and Johnson 1979], an optimization
problem is NP-hard if its decision version is NP-complete. Hence,
our INVERSE_TILING problem is NP-hard.

2 Analysis of Our Approach

In this part, we first provide derivation on the search space size of
our prototile set construction method in our approach and a trivial
method based on partitioning the input domain into N pieces (i.e.,
tiles). Next, we experimentally show that the search space of our
method is significantly smaller than that of the partitioning-based
method.

Search space of our prototile set construction method. The search
space of our prototile set construction method is O((’)) - O(N -

[T 1 (2k + 2)), where Cinax is the user-specified maximal al-
lowable number of grid cells of each tile. In our method, we first
select N seeds from M grid cells, which corresponds to a search
space of O((AA/,[)) After that, we enlarge these N tiles by itera-
tively including their neighboring unoccupied grid cells, starting
with initial tiles that occupy only a single grid cell. For each tile with
k grid cells, there exist at most (2k + 2) unoccupied neighboring
grid cells [Redelmeier 1981] that can be included to enlarge the tile.
Therefore, when Chay is given, the total number of tile enlargement
variations is bounded by ch;“{“fl (2k +2). For N tiles, there are

at most (N - Hg;“i‘rl(2k + 2)) possible enlargement options. By

default, Cax is set to [%] + 1. Hence, the search space of our

method is O((*))) - O(N - TTL % (2k + 2)).

Search space of the partitioning-based method. The search space of
the partitioning-based method is O(N). This is because there are
N™M possible ways to partition a domain with M grid cells into N
pieces (i.e., tiles) since each of the M grid cells can be assigned to
any of the N tiles.

Comparison with the partitioning-based method. We compare the
search space of our prototile set construction method with that of the
partitioning-based method under two different experimental settings.

terlﬂ

/|
v

'ig

—l_j_l—l_l—‘ |
Em_

J’_J—] N

B

NEEE p I [] []

H |
L]

l_f T_I_ l__l—

tonref (a) t’enlvref (b) (c)

(d) (e) ()

Figure 1: Enlarging part of the tiles congruently for a tiling state. We first (a) select prototile t., (in green color) from existing prototiles {ty},
and then select prototile instance t, s as the reference tile. Next, we (b) enlarge the reference tile te,, o to form the target tile t;,,,,ef (in yellow
color) by including an adjacent uncovered grid cell. We further (c-f) enlarge each of the remaining instances of the prototile t.,, such that it

has the same shape as the target tile t(',,,,mf.

Search Space Comparison (N = 20)

10 partitioning-based method
our method 1.5 X207

1.4x10'%2
10 1.3x10%¢
10 1.3x 1013

110 104
10 1.2 x 10

search space size

4.3x10%° 13x10%
6.8 x 102 12x10% 9.5x 1077

80 100 120 140 160
M (number of grid cells)

Search Space Comparison (M = 120)

10’ partitioning-based method

our method 1.8x 10177
170 5.7 x 107
1.3x10%¢

1.4 x 101

1.0 x 10120

search space size
>

5
3.0x 107 2.4%10% 9.5 x 1027 8.0x10% 33x10

10 15 20 25 30
N (number of tiles)

Figure 2: Comparing the search space size between our prototile set
construction method and a partitioning-based method: (top) search
space size with respect to M while fixing N = 20; (bottom) search
space size with respect to N while fixing M = 120. Note that the
vertical axis (i.e., search space size) is in logarithmic scale.

First, we fix the number of tiles N = 20 and increase the number
of grid cells M to analyze the growth of the search space size with
respect to M. Next, we fix the number of grid cells M = 120
and increase the number of tiles [V to analyze the growth of the
search space size with respect to IN. Figure 2 shows that as M (V)
increases, the search space of our method is significantly smaller
and grows slower than that of the partitioning-based method. One
possible reason to explain this is that the tile iterative enlargement
strategy in our method naturally ensures that each tile satisfies the
prototile size/shape constraints, which cannot be achieved by the
partitioning-based method. This experiment demonstrates the effec-
tiveness of our prototile set construction method to reduce the search
space of the inverse tiling problem.

3 Implementation Details for Enlarging Tiles

In this part, we provide implementation details of the approach for
generating candidates of the next tiling state in Section 5.1 of the
paper. This approach consists of four steps to enlarge tiles.

(i) Selecting a prototile t.,. We select a prototile, say te,, from
the current set of prototiles {¢ } for enlarging its tiles (pro-
totile instances) based on three criteria (see Figure 1(a)):

* Prototile size. First, we prioritize enlarging small prototiles
to meet the minimum allowed number (Ciin) of grid cells.
If a prototile’s size equals Chax, it should not be selected.

* Number of prototile instances. Second, we prioritize en-
larging a prototile with a large number of instances, aiming
to cover more grid cells in the input domain D.

» Enlargeability. Third, we prioritize enlarging a prototile
with a low enlargeability value, as some of its instances may
not be enlargeable after a few tile enlargement operations.

We normalize each term to the range [0,1], with a higher
value indicating a higher chance of choosing the prototile.
Empirically, the weights for the three terms are set as 0.6, 0.2,
and 0.2, respectively, to balance the impact of the terms.

(ii) Selecting a prototile instance te,, r.r. After choosing prototile
ten, we further pick one of its instances, say ten, ref, to form a
reference tile; see Figure 1(a). In detail, the prototile instance
ten, ref Will be enlarged by including an adjacent uncovered
grid cell, and the enlarged shape will serve as a reference to
guide the enlargement of the remaining prototile instances in
{ten, ; }- We prioritize selecting ten, rer as a prototile instance
with a low enlargeability value for two reasons. First, such
a prototile instance may not be enlargeable if we choose to
enlarge some other prototile instances first. Second, a prototile
instance with a low enlargeability value has less flexibility
to be congruently enlarged, so enlarging it first increases the
chance of congruently enlarging more prototile instances.

(iii) Determining the target tile ti,,,’ rr- After choosing prototile
instance ten, ref, We next have to choose which of its adjacent
uncovered grid cells to take for enlarging ten, rer to form a
new tile denoted as t;n, fs see Figure 1(b). We determine
the shape of target tile tén_y of using the following approach,
guided by the congruent tiles requirement:

* Match an existing prototile. We first identify uncovered
grid cells adjacent to tile ten, . Then, we try to extend
ten, ref to include each of the uncovered grid cells and check
if the enlarged tile has the same shape as one of the existing
prototiles. In case the reference tile ¢, rof can be enlarged

i

E 3 i o
B 2.
S

0 = @ e

Figure 3: A tiling result produced by our approach on an input domain SIGGRAPH with 8 disjoint letters.

h

in different ways to match multiple existing prototiles, we
choose the existing prototile as the target tile tg, ., for
which the associated uncovered grid cell has a low block-
ability value. By doing so, we have a better chance of

reducing the number of prototiles by one.

* Match part of an existing prototile. In case the reference tile

Iﬂ |}‘ ten, ref cannot be enlarged to match any existing prototile,
[B ’

we choose the target tile ¢, s whose shape matches part

of an existing prototile using the same method as above.
By doing so, the reference tile ten, rof Will have a chance of
IC

matching an existing prototile after a few more iterations of
tile enlargement.

F H * Choose an uncovered grid cell. In case the reference tile
] ten, ref cannot be enlarged to match any existing prototile
] or part of any existing prototile, we prioritize to choose
an uncovered grid cell adjacent to the reference tile ten, ref
with a low blockability value, and assign the cell to fen, ref
to form a target tile tém s see Figure 1(b). If the target
tile t;m ot does not satisfy the prototile shape constraints
(i.e., the bounding box size Whpox X Hpbox and the convexity
threshold 7conv), We discard the assignment and choose
another uncovered grid cell to enlarge the reference tile

ten, ref -

(iv) Enlarging the prototile instances {t.n, ; }. Once the target tile
shape témef is determined, we aim to enlarge each of the re-
maining prototile instances in {tn, ; } to make it have exactly
the same shape as tén, wf» to meet the congruent tiles require-
ment. This can be classified into three cases. In the first case,
one uncovered grid cell can be assigned to multiple adjacent
prototile instances to make each of them match t;, . In this
case, we assign the cell to the adjacent prototile instance with
a small enlargeability value; see Figure 1(c—d). In the second
case, a prototile instance has multiple choices of including an
adjacent uncovered grid cell to match t;n, - In this case, we
assign the adjacent uncovered cell with a small blockability
value to the prototile instance; see Figure 1(d—e). In the
last case, one uncovered grid cell can be assigned to a single
adjacent prototile instance to make it match ¢, .. In this
case, we directly make the assignment; see Figure 1(e—f).

XA Y/ Lo OO @ = 4 Additional Inverse Tiling Results
4 45) LA Inverse tiling results on disconnected domains. Our inverse tiling

approach is able to produce tiling results on disconnected domains.
Figure 4: Our approach allows generating different tiling results Figure 3 shows that our approach is able to produce a tiling result
with the same K for the same input domain. For each input domain, from an input domain with disjoint regions (i.e., eight alphabet
we show two different tiling results with the same K. letters).

Inverse tiling results for the same K. Thanks to the randomness in
our prototile construction process, our inverse tiling approach allows

Table 1: K-hedral tiling results of BUNNY with different resolutions generated in the experiment to evaluate scalability of our approach by
comparing it with two baseline approaches. The computational time of each result is in minutes.

[Crin Cad = [3, 6]
M=68, N=15 M =107, N=20 M =216, N=45 M =484, N =100 M =1000, N =200
baseline #1 baseline #2 | ourapproach | baseline #1 baseline #2 | ourapproach | baseline #1 baseline #2 | ourapproach | baseline #1 baseline #2 | our approach | baseline #1 baseline #2 | our approach
l : 5 ‘ 164 5 ‘ 0.03 13.13 7.41] 31.29 5.01 182.94 28.30 482.39| 41.87
‘l . J
K=6 / Mv‘\ . “"\ T / == [o / / /
ey | e ‘ , ‘\
fr=aREs, - = I }
0.41 I ‘ 0.01 9.37 6.76) 13.38 3.95 101.37 21.25 251.20] 35.92
Y |
K=8 / g - = e / [) I / / /
o =l i
1 - [
- “244031 “ 0.45 m ’—‘ 0.04 1) 438 0.64] 1.59 0.92 54.92 17.29 114.86| 28.39
L £
T [T ! s
k=to| EFfEr—=, \’_{-l‘ : ‘.‘."‘:j /], ! gn o / / /
i - L,
| Bl | e 7
] ‘ 125713 5 ‘ 0.61 § 0.56 [0.52 0.02] 0.47 0.03 39.63 13.78 63.87 23.63
' L r
T 1 o {7
= = [R [|
k=12 n{‘T \H“ | ey / ks W‘H‘ / / /
; lj ERE i
convexity: X v >0.8 v >08
bounding box: X X v 4x4
e BB i
[
|
[ESESSaEE ﬁ .
‘ ‘ l ‘ | 20x[] 14xEP ox B oxef ox] 5x: 6x [6xcll] 6xThmex SX‘F 5x
‘ ax [l axefl] ax [axoe axfim axgl]
- - ,) =
| 6 G i o EdE P B B o o T el ‘)
B 3x“\3x‘1ﬂ axeglin ax g 3 xefy 3er’L[
f B o : B e 2 B
el PF FowF2 P ©eddd oy g
1xbl 1x ax el 3x 1

Figure 5: Our approach allows generating tiling results with con-
straints on the prototile shape, which are: (i) minimum convexity
0.8; and (ii) maximum bounding box 4 x 4. Tiling results generated
(left) without the two constraints, (middle) with the first constraint,
and (right) with both constraints.

generating different tiling results with the same K for the same input
domain; see Figure 4 for examples. In practice, we can generate
multiple tiling results with the same K for the same input domain
and one can choose a tiling result according to his/her preference.

Inverse tiling results with constraints on the prototile shapes. Fig-
ure 5 shows how constraints on the prototile shapes affect the tiling
result. In particular, the prototile convexity constraint (convexity
> (.8) avoids structurally weak tiles for fabrication; compare Fig-
ure 5 (left) and (middle). The prototile bounding box size constraint
(4 x 4) further makes each tile more compact; compare Figure 5
(middle) and (right).

Inverse tiling results for a more balanced prototile set. Figure 6
shows that our approach allows controlling balance of the numbers
of prototile instances. This is achieved by prioritizing choosing the
next tiling state candidate where the numbers of prototile instances,
{nx}, are more balanced in the computational framework.

5 Evaluating Scalability of Our Approach

In Section 6 of the paper, we conducted an experiment to evaluate
the scalability of our inverse tiling approach by comparing it with
two baseline approaches. The first baseline is a randomized search

Figure 6: Our approach allows controlling balance of the numbers
of prototile instances {ny}: (left) less balanced {n} where ny, €
[1,20], and (right) more balanced {ny} where ny, € [3,6].

of all possible partitions of the input domain to find a K-hedral
tiling result. The second baseline is a randomized search within our
computational framework, where the strategies (i.e., blockability and
enlargeability) are disabled. In this part, we provide more details
about these two comparisons.

Comparison with baseline #1. Table 1 shows that baseline #1 is only
able to generate a tiling result when both the number (M) of grid
cells in the input domain and the number (V) of tiles are small (i.e.,
when M = 68 and N = 15). In contrast, our approach is able to
generate a tiling result even when M and N become larger (e.g.,
when M =1000 and N = 200). The better scalability performance
of our approach can be explained by the smaller search space enabled
by our computational framework; see again Figure 2.

Comparison with baseline #2. Although the search space has been
significantly reduced by using our computational framework, it re-
mains large, making a randomized search within the computational
framework (baseline #2) inefficient for finding a tiling result on a
large input domain; e.g., baseline #2 took 8.04 hours to generate
a K = 6 tiling result for a BUNNY with 1000 grid cells and 200
tiles. Hence, we introduce two strategies to guide the search pro-
cess: blockability and enlargeability; see Section 5.1 in the paper.
By incorporating the two strategies, the computation time of our
approach is significantly reduced compared to baseline #2 that does
not use them. Table 1 shows that our approach is more efficient
than baseline #2 for generating a K -hedral tilting result for input

T |k
mnil

o 5 T

H v

Figure 7: Tiling results for six different input domains produced by
our inverse tiling approach. For each of them, the minimized K is
the same as the ground truth.

domains with difference sizes (M's) and different given number of
tiles (/Vs). This improvement demonstrates the effectiveness of our
strategies in guiding the search of desired inverse tiling results within
our computational framework.

6 Evaluating K Minimization of Our Approach

In Section 6 of the paper, we validated the proximity between the
minimized K computed by our approach and the actual minimal K
by comparing our approach with the ground truth for tiling the same
2D finite domain. Here we use dancing links (DLX) [Knuth 2000] to
find the minimal K. DLX is a technique for efficiently implementing
backtracking algorithm, enabling to efficiently enumerate all the
possible tiling results for a given set of allowable tile shape. In this
experiment, we use tetrominoes (4 squares) and/or pentominoes (5
squares) to tile the COIN, HOUSE and TEAPOT, since tetrominoes
and pentominoes are the most commonly used tiles in polyomino
tiling problems. There are 5 free tetrominoes without holes and 12
free pentominoes without holes [Redelmeier 1981], so we have 17
possible tile shapes in total. Hence, there are (117) = 17 possible

sets with a single shape, (127) = 136 possible sets with two shapes,

and (137) = 680 possible sets with three shapes. To find the minimal
K, we iterate through all sets of allowable tile shapes, starting with
sets with a single shape (K = 1), then moving to sets with two
shapes (K = 2), sets with three shapes (K = 3), and so on. For each
set of allowable tile shapes, we employ DLX to identify if there
exists a feasible tiling result. As we aim to find a minimal K rather
than enumerating all the tiling results, we stop the iteration once a
feasible tiling result is found and record the number of tile shapes in
the current set as the ground truth (minimal K'). The minimal K for
the COIN, HOUSE and TEAPOT is found as 1, 2 and 3, respectively.

Next, we run our inverse tiling algorithm to tile the three input
domains, where the tile size constraint is set as [Chin, Cmax] =
[4,5]. Specifically, the number of tiles IV falls within the range of
[[48/5] = 10,|48/4| = 12] for the COIN, [[88/5] = 18,|88/4] =
22] for the HOUSE and [[213/4] = 54,|213/5] = 42] for the
TEAPOT, based on the tile size constraint and the number of grid
cells in the input domain (48 grid cells in the COIN, 88 grid cells in
the HOUSE and 213 grid cells in the TEAPOT). We parallelly run our

Table 2: Statistics of our user study. The 2nd column to 6th column
present the time of solving each puzzle in minutes. Specifically, slash
indicates the user cannot solve the given puzzle in 60 minutes. The
last row provides the average time (t) for solving each puzzle in
minutes.

Bird Bird Bird Heart (squ) Heart (hex)
N=20, K=5 N=20, K=10 N=10,K=5 N=20,K=4 N=20, K=4
User 1 10.55 / 21.34 36.41 /
User 2 13.42 26.47 6.5 14.95 39.71
User 3 18.94 37.54 3.41 21.96 17.56
User 4 22.84 / 17.46 57.51 /
User 5 19.62 / 5.61 17.35 45.78
User 6 22.45 41.28 10.54 27.46 52.68
t 17.97 35.10 10.81 29.27 38.93

approach for each possible IV to find the tiling result with the small-
est K for at most 12 hours. As a result, our approach achieved the
minimal K when tiling the COIN (0.35 minutes) and HOUSE (15.35
minutes) while generating a tiling result with K = 4 for the TEAPOT
(331.86 miuntes), which is close to the ground truth (K = 3). This
experimental result shows that our inverse tiling approach is able to
efficiently find a minimized K that is equal or close to the ground
truth.

In addition to the three results shown in Figure 11 of the paper, we
also use the same experiment settings to evaluate the minimization
of K for another six input domains; see Figure 7. For each of the six
input domains, our approach is able to efficiently find a tiling result
with the minimal K (ground truth) within 1 minute.

7 User Study of Puzzle Application

In Section 6 of the paper, we conducted a user study to evaluate the
2D assembly puzzles designed by our inverse tiling approach. In our
user study, we recruited 6 participants who had no prior knowledge
of our 2D assembly puzzles to study factors influencing the level of
difficulty of our designed puzzles. For each participant, we briefly
introduced the concept of K-hedral tiling of 2D finite domains and
then informed him/her the task of assembling a set of puzzle pieces
to form a 2D target shape within 60 minutes. During the assembly
of puzzle pieces, users were allowed to rotate, translate and flip the
pieces (tiles) to find a feasible assembly result. We presented each
participant with 5 assembly puzzles in the following order: BIRD
with N = 10, K = 5, BIRD with N = 20, K = 10, BIRD with
N =20, K = 5, HEART (square grid) with N = 20, K =4, and
HEART (hexagon grid) with N = 20, K = 4 . After each participant
attempted to solve the puzzle (i.e., assemble the puzzle pieces to
form each target shape), we recorded whether they successfully
solved the puzzle within the regulated time period and the time taken
to solve the puzzle if successful.

Result. The statistics of our user study is presented in Table 2.
The slash in Table 2 indicates the user could not solve the given
puzzle within 60 minutes. Most of puzzles were solved between 10
to 50 minutes, demonstrating the varying levels of difficulty across
the puzzles. We observed that a puzzle’s level of difficulty is related
to the number of pieces (IV), the number of distinct pieces (K), and
grid types. This is because a large N, a large K, and a complex grid
type (i.e. hexagon grid) increases the number of possible combi-
nations in which two pieces can be put together with edge-to-edge
contact, making the puzzles harder to solve for players. For example,
participants took longer to solve BIRD with N =20, K =5 (17.97

minutes on average) compared to BIRD with N =10, K =5 (10.81
minutes on average), confirming the relation between the number
(V) of tiles and the puzzle’s level of difficulty. Moreover, three of
our participants failed to solve BIRD with IV = 20, K = 10, demon-
strating that the puzzle’s level of difficulty increases for a large K.
In terms of level of difficulty caused by different grid types, we
observe that two of our participants failed to solve HEART (hexagon
grid) with N = 20, K = 4 within 60 minutes while all the partici-
pants successfully solved HEART (square grid) with NV = 20, K =4,
validating the puzzle’s level of difficulty increases for a grid pattern
where the grid cells have more edges. Thanks to our inverse tiling
approach, users are able to design a puzzle whose level of difficulty
matches his/her ability by specifying the number (V) of tiles and
the grid type and choosing tiling results with a desired number (K)
of prototiles.

References

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company.

HORIYAMA, T., ITO, T., NAKATSUKA, K., SUZUKI, A., AND UE-
HARA, R. 2017. Complexity of tiling a polygon with trominoes
or bars. Discrete and Computational Geometry 58, 3, 686-704.

KNUTH, D. E. 2000. Dancing links. In Millennial Perspectives in
Computer Science, 187-214.

REDELMEIER, D. H. 1981. Counting polyominoes: Yet another
attack. Discrete Mathematics 36, 2, 191-203.

