
Supplementary Material for
Modeling Wireframe Meshes with Discrete Equivalence Classes

This supplementary material provides implementation details about
solving the global mesh optimization (Section 7) and local mesh
optimization (Section 6) in the paper. In particular, the local mesh
optimization problem is a small-scale version of the global mesh
optimization problem. Hence, we first present the implementation
details of solving the global mesh optimization problem, and then
briefly introduce how the solver is slightly customized to solve the
local mesh optimization problem.

1 Global Mesh Optimization
After clustering vertices and edges using hierarchical clustering with
two prescribed tolerances, a set of template vertices and template
edges can be computed. During global optimization, our goal is
to minimize the difference from each vertex and edge in the mesh
M to their corresponding templates by optimizing the 3D positions
{vi} of the mesh vertices. The global mesh optimization problem
consists of four energy terms:

E = λ1Evertex + λ2Eedge + λ3Eshape + λ4Efeature (1)

s.t. θi > 2arctan w
r
, ∀ vertex angle

lj > 2R, ∀ mesh edge

where Evertex and Eedge are the sum of intra-cluster variance in each
vertex and edge cluster, respectively, Eshape measures the mesh defor-
mation from the mesh M to the reference input mesh P, and Efeature
indicates the degree to which user-specified features are preserved in
the mesh M. As directly minimizing these non-linear energy terms
at the same time is challenging and time-consuming, we approxi-
mate Equation 1 as a least squares equation inspired by [Bouaziz
et al. 2012; Bouaziz et al. 2014].

Least Squares Reformulation We convert Equation 1 into a least
squares problem as following:

min
x
∑
i

λi∥Aix − bi∥2 (2)

where λi is the weight of each energy term, Ai is a constraint matrix
of the ith energy term and bi is a target vector. For a mesh with n
vertices, solving Equation 2 is equivalent to finding x to satisfy the
following least squares equation:

Ax = b (3)
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√
λ1Avertex,

√
λ2Aedge,

√
λ3Ashape,

√
λ4Afeature)

x = (v1,v2, ...,vn)
bT = (

√
λ1bvertex,

√
λ2bedge,

√
λ3bshape,

√
λ4bfeature)

where A is a p × n geometry constraint matrix, x is a n × 1 vector
consisting of all the mesh vertices that we are solving for, and b
is a p × 1 target vector. Note that p is determined by how large
or complex the energy terms are. Among these four energy terms,
formulating Eshape or Efeature as a least squares problem is a common
knowledge. In the following, we will clarify how to reformulate
Evertex and Eedge to a least squares problem like Equation 2.

Evertex Recall that Evertex is the sum of the distances from each
vertex to its corresponding centroid vertex:

Evertex =
Kv

∑
k=1

∑
i

(Dv(vk,i, v̄k))2 (4)

where vk,i is the ith vertex in the kth vertex cluster, and v̄k is
the centroid of the kth vertex cluster. Given a m-valence mesh
vertex vk,i and its target template vertex v̄k, we first use singular
value decomposition to find the optimal alignment rotation matrix
Tk,i from centroid vertex v̄k to the vertex vk,i [Liu et al. 2023].
Thus Dv(vk,i, v̄k) can be formulated as the following least squares
equation:

Dv(vk,i, v̄k) = ∥Ak,ivk,i − bk,i∥ (5)
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bk,i = Tk,i
Tv̄k

s.t. Tk,jT
T
k,j = I

where Ak,i and bk,i are a m × (m + 1) geometry constraint
matrix and a m × 1 target vector for vk,i, respectively, dm is
the distance from vk,i to m-th neighbouring vertex vm

k,i, vk,i =
(vk,i,v

1
k,i,v

2
k,i, ...,v

m
k,i)T is represented by its own vertex and

its m one-ring neighbouring vertices, and v̄k is an m + 1 vector
(v̄k,0, v̄k,1, , ..., v̄k,m)T . Please refer to Section 5 in our paper for
the detailed explanations of dm, vk,i and v̄k. In our global optimiza-
tion problem, we insert some all-zero columns to each Ak,i to form
a matrix A′k,i with n columns. Then we concatenate a set of A′k,i
and bk,i to form the geometry constraint matrix Avertex and target
vector bvertex for Evertex, respectively.

Eedge Recall that Eedge is the sum of the difference from each edge
length to its corresponding target edge length:

Eedge =
Ke

∑
l=1

∑
j

(De(el,j , ēl))2 (6)

where el,j is the jth edge in the lth edge cluster, and ēl is the
centroid of the lth edge cluster. De(el,j , ēl) can be formulated as
the following least squares equation:

De(el,j , ēl) = ∥Al,jel,j − bl,j∥ (7)

Al,j = ( 1
ēl
, −1
ēl
)

bl,j = (vl,j,1 − vl,j,2)/∥vl,j,1 − vl,j,2∥2

where Al,j and bl,j are a 2 × 1 geometry constraint matrix and a
2 × 1 target vector for el,j , respectively, and el,j = (vl,j,1,vl,j,2)T
is a 1 × 1 vector defined by two end vertices. Then we concatenate
a set of Al,j and bl,j to form the geometry constraint matrix Aedge
and target vector bedge for Eedge, respectively, in the same way as for
Evertex.



Solver We use successive over-relaxation (SOR) [Guennebaud
et al. 2010] in Eigen library to solve Equation 2. Since the least
squares method is not designed for solving optimization problems
with hard constraints, the two hard constraints (for fabrication) in
Equation 1 are not included in the least squares problem. However,
this reformulation may lead to few vertex angles and/or mesh edges
that do not satisfy the fabrication constraints. In our experiments,
we found that these vertex angles and mesh edges are very few and
only appear in mesh models with complex curvature. Moreover,
vertex angles and mesh edges that do not satisfy the constraints
are mostly marginal cases (i.e., close to the threshold). To address
this issue, we first identify these vertex angles and mesh edges
in the optimized mesh M. If we find any such angle or edge, we
slightly adjust the position of the corresponding vertex using a
sampling-based approach to make the angle or edge satisfy the
constraint. In case this local perturbation introduces few new vertex
clusters and/or edge clusters, we will try to resolve (i.e., merge)
them in the next iteration of local mesh optimization.

2 Local Mesh Optimization
Recall that we formulate an optimization problem to search for a
feasible 3D position v of the vertex v to decrease Kn

v (Case 1) :

Elocal = ω1(Dv(v, v̄t))2 + ω2(Dist(v, P))2 + ω3∑
k

(Dv(vk, v̄k))2

+ ω4∑
l

(De(el, ēl))2

(8)

s.t. θi > 2arctan
w

r
, ∀ mesh vertex ∈ {v,N(v)}

lj > 2R, ∀ mesh edge ∈ I(v)

Similar to global mesh optimization, we reformulate Equation 8 to a
least squares problem and solve it in the same way as the global
mesh optimization. Comparing to the solver used in the global mesh
optimization, the only difference is that we increase the number
of samples when we slightly adjust the position v of optimized v.
There are two reasons. First, vertex v should be reassigned to a new
cluster which needs larger modification than requiring v stay in the
same cluster. Second, the searching space is a 3D position v only
so that the time complexity is still manageable after increasing the
number of samples. We use the same approach to solve the local
mesh optimization problem in the other two cases.
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